FireTrac Advanced 1394 I/O Solution

Operation and API Reference Manual

Doc #: DT-PRO130MAN2110E

Version 2.1.10
Project: firestackmil1394
Operating System: vxworks

FireTrac Advanced 1394 /O Solution

Copyright(C) 2008-2020 by DapTechnology B.V. All rights reserved.

This text contains proprietary, confidential information of DapTechnologyB.V.,, is distributed

by under license from DapTechnologyB.V., and maybe used, copied and/or disclosed only pursuant
to the terms of the FireStack End-User License Agreement (EULA).

This copyright notice must be retained as part of this text at all times.

FireTrac Advanced 1394 /O Solution

Table of Contents

Chapter 1. FireTrac Product Family 11
1.1 Network Simulation..........ooeii 12

1.2 Simulating AS5643 CCs and RNS.........cciiiiiimiiiiiiiri e e 14

1.3 FIireTracdd24bTot r s e s e s s s e s st e s s e s se s sasenssasenssnsansnnsensnnsnnns 15

SOftWare REQUIFEMENLESceeiieieiicccrirr s cese s s ss s e s ss s ssn e s s s s ssme s se s sms e e s s snn e e sassan e e eassanneeesnsmeeeesssnnnesessnnensnssnnnnnan 15

X o 1 - U - 16

T TRV o] - 18

L 1L T Lo T 1T Y 18

1.4 FireTrac3460DTcouiieiiiiiiiiirr s rr seassassnssasssssnssnssnssnssnsensnnsnnns 19

Software REQUITEMENEScociiiiiirii s s e e n e s s an s sane s 19

N o 4T = T N 20

LT T - 21

(09 ¢T3 T4 L= o2 2o« T4 Ty T3 ¥ 22

T4 T N 23

L 1L T Lo L T 1 T N 25

1.5 SPeCifiCatioNs....cccveiieiiii i e e e rrnrnaenn 27
Chapter 2. Software Overview 28
0t B V1 o T 4 28
INEFOAUCLION bR R e e 28

ESTUT oY oXoT g 4o I od B o] o 1 1 -SSP SR 29

DeVICe SPECIFIC NOLESeeiiici et s e s e se e e e se e s me e e sme e e see s sneeasneeeesee s snneaneensnnenan 30

Platform SPeCIfiC NOLESceiiiiecee et se e s s s e e s sae e e s me e e me e e ne e s nn e e nn e e nnenan 30

(oY1 e LT =TT 4 T Vo T 31

UPGrading FIrMWAre ...t e e s e e s e s e e e ae e s m e e e e nn e 32

LI L= Iy = 1 T B T L= 1 =Y 33

Chapter 3. Definition of Terms 35
Chapter 4. Document Conventions 36
Chapter 5. Parameter Naming Conventions 37
Chapter 6. API Revision History 38
6.1 Changes in 2.1.X SEIi@S....ccuiiriuiiiuiiiriiri e e raaas 39

6.2 Changesin 2.0.X SErieS......cuuuiiiiriuiriiriir s e raa s 40

6.3 Changesin 1.0.X and 0.98.X SErieS......ccccuiiruriruirrrriarrnirrnrrasrrasrrsrnsrnsrnsssnssrnssenssnnsrnnsnnssenns 41
Chapter 7. General Structures and Definitions 42
7.1 Type Definitions.... ..o 42

1= T3 Lo I8 1= 42

BT =Y o - 1 T T 42

7.2 Structure DefinitioNns...... ... e 43

L4 N 43

L7 N 43

L o L= -] 43

L) (03 T 1 14 L= 11T N 43

FireTrac Advanced 1394 /O Solution

)T 1 4V 43
7 T 0 o T - 1 5 | PPN 45
BT 0T =0 0o T [45
B L o= 1o 0 5 T I8 o= 45
Chapter 8. Administrative Functions 46
= g N 3 1 =Y 2 N oY
Functions
fxInitialize
Q=14 10110 E (= TP SPRR 47
FXAAALICENSECEITIFICATE. ... oottt ettt e et e e st e e e bt e e s seeesneeeenbeeesneeaanneean 47
8.2 Bus INitialiZation........cceiniiei e e rna e 49
LU T2 4o 49
fxGetNumberOfBuses ... 49
FXGEIBUSINTOLIST. ...ttt ettt h et ht e e st e e bt e e e ae e e s mbe e eabeeesnbeeanbeeanbeeeaneeeanneaan 49
FXCreatEBUSHANGIE............eeie ettt et e e bt e e s ae e e s be e e be e e aaeeeaneeeenneeeaneeeanneaan 49
FXCIOSEBUSHANAIE ...ttt ettt e h e he e e st e e bt e e e ae e e e mbe e eabeeesaeeeanseeenbeeeaneeeanneaan 50
FXGEEEUIBA.........eeeeeeeieeie ettt et ettt et e e e e ste e s e e eaeesseesate et e e eseeaseesseenseeseeeaseeseeaseeaseesseeseeseenseenneenseaneennnennes 51
15 T T =
FXBusInfo
5 T=E T T
Features
Demo Mode
Stack Size
Bl =T= Lo I o411 PSPPSR 53
1Y A LI O o L= USRS 54
8.3 Memory Management........ccoiiiuiiiuiiiieire e e e e 55
FUNCLIONS .. e 55
fxMemAlloc ... 55
FXIMIBIMITEE. ...ttt h e e h e e e a bt e e bt e e b et e e h bt e e bt e e bt e e e ab e e eab e e e abeeeaabeeenbeeeaneeeanneean 55
2 S €= o 1= - | 57
T 4T oY 4 N 57
LG (T r= T YAV =T = (o] o S 57
£ T Lo 4T - TSP
FXVersioninfo.... .
R =5 T gl F= 5 T | 1 P
FUNCLIONS .. E e AR e e R e e e E A e e E R e e Enan e 58
RGeS o SRR 58
DS 1= = g o] 0:= 11| o= Tod SRR SPRR 58
LR C = = (o] aS] - | (U PSPPSR 59
L0 0 4 T3 T3
[Lo g @ o [USSR
Type Definitions
FXErrorCallback
Chapter 9. AS5643 Protocol APl Reference 61
9.1 AS5643 Frame Timing
Functions ...
fxMilSetFrameTimingOptions
LAY 5721 653 (o011 o= eSS
EXMIIGEFramMEOFfSEETIMEeiuee ettt ettt ettt et e e e e e ene e smeesaeeseeesaeeneeenseeneeeneeaneeeneennes
EXMIIGEtSIOf TIMESTAMPeeeiieeeee ettt ettt et e e et e e eae e e s aaeeeabeeeasaeesnseeenseeeaneeeanneean
LR < =IO
LY 55 o) 0= [=T o S

FireTrac Advanced 1394 /O Solution

5T Lo
FXMilFrame TimingOptions
1021 =T 1. o TSRS
[0 0 4 E-3 - T 1 Y
o] gl 0o L USRI
Frame Synchronization INPUE MOAES..........coueiiiiiiiie ettt et e et e e eae e e aneeeeneeas 67
Frame Synchronization Output Modes.... ... 67
Frame CONErOl FIAGScoiuiie ettt ettt e h e e e st e e et e e bt e e eaeeaembeeeabeeeeneeaanseeanseeeaneeeantaaanneas 68
9.2 ASS5643 RECEPLION......iieiieiiiiiiiiiir s s rr e s s s e s e s s s e e e rrnrn e rnnnrnns 69
5= {3 T Y
RESOUICE USAQE...... ettt ettt a e e h et e st e e bt e e she e e ea et e e a bt e e e he e e ea b e e e nbeeeabeeeeabeeenbeeaneeeanteeanneas
00T 4T
ChanNEl SEIECHIONS.........eeeeeiet ettt b e bt e bb e e e ab e e s be e e be e e eabeesabeeebeeesnbeesbeeeneeennne
fxMilRcvEnableChannels.....
fxMilRcvDisableChannels.
FXMIRCVGEtENabIEdCNANNEIS.........ooiiiiiiie ettt e e b e e eaee e s e e e sneeas 70
LY ST Y= o [(= = PSS UUPRRURN
EXMIRCVAAAFIEIIEIML. ...ttt te et e e naeeseeeneesseesseeaneesseenseesseenseennean
fxMilRcvRemoveFilteritem.......
fxMilRcv ClearMessagekFilter.
FXMIRCY GEtNUMFIEIEIMIS. ...ttt et e e e eae e e snreeaneeas
FXMIIRCY GELFIEIHEMLIST. ...ttt e st e e ae e et e e et e e saae e sneeeaneeas
BUFFEI CONIIOL.......eeiee ettt ettt e e bt e e bt e e bb e e eab e e s bt e e be e e esbeesabeeebeeeanbeesbeeeneeennne
LAY LoV Lo | ST = S 75
EXIMIIRCVLINKBUFFEIS. ...ttt ettt et e st e s et e e te e e e s e e nseeneeenseeseesseenneesseenseeseenseennean 76
FXMIRCVREMOVEBUFTEoiiiii ettt et e st e e ae e e st e e et e e e naaeesnreesneeas 77
FXMIIRCVBUTTEISTATUS. ...ttt b e et e et e e ae e e sat e e snbe e e naeeesneeeaneeas 77
(0] 01 (o) A 00 o1 1o F PP URUPRTRURN 78
FXMIRCVCreateConteXTHANMIE.............ooii et 78
FXMIRCVCIOSECONEXTHANAIE. ...ttt e s b e e eaa e e ar e e sneeas 79
FXMIIRCY SEtCONTEXTOPTIONS. ...ttt ettt rh et e st e e sabe e saeeeeabe e e naaeesnreeaneeas 79
fxMilRcv StartContext
fxMilRcv StopContext.
FXMIIRCY CONIEXISTATUS. ...ttt h et e st e e bt e e sat e e snb e e e eaeeesneeeaneeas 80
TYPE DEFINItIONS ... s e s e ae e e e nn e e e nnen s 81
FXMIRCVCONEXTHANGIE........coieii et e et e a e e it e e et e e sae e e sat e e s naee e beeesateesnneas 81
FXMilRcvCallback... .
15T T 1
1| 3oV a 1 (=T o (=] 4o RSP
FXMIRCVBUTTEIOPIONS. ...ttt ettt h e e h e e et e e bt e e e st e e sa b e e embee e eaeeesabeeemneeeneeesaneeanneas 82
FXMIRCVBUFTEISTATUS. ...ttt ettt e et e e ae e e s et e e e bt e e sae e e sateeenbeeebeeesaeeeanneas 82
1| 3oV d =T 01 (@ o] (o] oI RSP 83
1| 3 oYL @ e] g1 (=) A (@] o] (o] RSP 83
FXMIRCY CONIEXISTATUS. ...ttt ettt et e e ae e e e et e e e bt e e sae e e sat e e e sbee e beeesneeeanneas 84
Constantsccccvvieevenens
Error Codes
Buffer Status Extended Staus BitS............ooiiiiiiii e 84
1 1 T o 1 1 | 85
RECEIVE PaCKEt FOIMAL.........oiiiiiiiiee ettt ettt et e e a b e e et e e s ae e e sae e e e naee e beeesaeeesnneas 85
9.3 ASS5643 TranSmMIiSSION . .c.ceuieiiieiirirtire ettt st st resreererearasrrarasrearessesressanressensessnnsensensensensen 86
LT 1 ' 86
RESOUICE USAQJE...... ettt h ettt e b e a et e e et e e aa et e h et e ah bt e e ane e e aa et e eae e e enne e e bt e e anneeennees 86
LT T T 86
(070101 (=Y a1V =T E=To =T 3 Yo S 86
EXMITrmCreateConteXtHANMIE.............oiieee e e e sne e e e e e enee s 86
fXMITrmCreateConteXtHANAIEEXL...........coiuieeee e e ne e ne e s 87
EXMITrMCIOSECONEXTHANGIE..........eeeeeiee ettt esne e s enneeneeeneeneean 88

FireTrac Advanced 1394 /O Solution

SiNGIE MESSAGE MOUTE. ..ottt et et e e e ab e e e bt e e te e e eabeeeabeeeaseeeaaseesabeeanseeaasseesnbeaanseaanns 88
fxMilTrmMessage
FXMITIMSPIIMES SAE ...ttt ettt ettt ettt e et e e bt e e sb e e eab e e e beeeenbeeenbeeeaeeaanseesnbeeeseeaanns 89
Streaming MESSAGES IMOGE.ottt ettt e bt e e eae e e et e e e teeeeabeesabeeanseaaasseesnbeaanseaanns 90
FXMITrmStrMWEIMMEAIATE ...t 90
FXMITrMSIrMWIEEMES SAGELIST ...t et e et e eeb e e e e eeeeeneas 91
fXMITrmStrmWriteSplitMessageList . 92
FXIMITTIMSEIMSEAIL ...ttt b et ettt et sbeenaeenaees 93
R IR0 100S] (o] o OSSP UP 94
FXIMITTIMSEIMICIEAN ...ttt a et sb et e b et e et et e e naeesaeenneenaees 94
FXMITIMSITMGEESTALUS.. ...ttt e et nae s 95
Repeating MESSAGES IMOTE. ...ttt ettt e ettt et e e e bt e e bt e e beeeanbeesbeeeseeeanbeeanbeeeseeeannas 95
FXMITrmCreateMessageHANMIEoc.uii et et 96
FXMITrmCreateMessageHANAIEEXLcouii i e 96
fxMilTrmCloseMessageHandle . 97
FXMITIMSEIMESSAGEDALAeeeiiieii ettt et et e et e e ab e e e bt e e st e e anbeeenbeeeesaeeenns 98
FXMITrmMSEtMES SAgESPItDALAL.ceitiiiiiii ettt ettt e e e bt e e b e e e sreeebeeeeseeeenns 98
FXMITrMSEtMESSAGEOPLONS ...ttt ettt et e bt e e b e e abe e e bt e eseeeeseeeenbeeeaseeennns 99
FXMITIMSTAITIMES SAGE ...ttt ettt e bt e ettt e e s b e e e beeeaneeeenbeeeneeeaneeeanbeeeaneeaaneeaans
fxMilTrmStopMessage............
fxMilTrmGetMessageStatus
STOF MESSAGE IMOUE........eeiuiiiiiiee ettt ettt ettt e bt e e et e e eabeeebee e b eeeeabeeembeeanseeeenbeesmseaanseaeanseesnseaanseans
FXMITrmSetStOfMESSAGEOPLONS.eieiiie ettt ettt e bt e e e e e be e e bt e e s st e e enbeeesneeeaneeaans 101
FXMITIMVVIEE SIOTIMES SAGE.ttt ettt et ettt e e bt e e ab e e e st e e e bt e e ssbeeenbeeeaneeaaneeaans 101
FXMITIMSArSIOfIMES SAGE. ettt ettt ettt e e ebe e e et e e et e e e ebee e s mbeeenbeeeaneeaaneeaans 102
FXMITIMSIOPSIOfIMIES SAGE. ettt ettt ettt et e e ae e e st e e et e e e ebee e s nbeeenbeeeaneeaaneeaans 102
BN/ < T3 L= 1T o = 103
FXMITrMCONIEXTHANGIE ...ttt b e e 103
FXMITIMMESSAGEHANGIE..........ee ettt et e e e bt e e ee e e e b e e e bt eeaseeeenbeeebeeeaneaanns 103
FXMITEMCAIDACKtttk e b e bt b b e bt e s e m e e e et e e b e sbesbenaeebeeneene e e e nee e ee
5T T o T Y
FXMITEMCONTEXTOPTION. ...ttt ettt et e et e bt e e ae e e eabeeebeeaaseeeenbeeeabeeaaseeeenseeebeeeaseaanns
FXMilTrmMessageOption
L= UL =T TP PUUPPR PSR TRRPP
FXMITIIMIMES SAJE. ...ttt etie ettt ettt ettt ettt ettt e e e et e e bt e e ket e eabee e beeaaseeeambeeeabeeaaseeeembeseabeeaaseeeanbeeebeaaaseaanns
FXMITIMSPIIMES SAEttt ettt ettt ettt ettt et a e e e bt e e bt e e eaeeeaabeesbeeaaseeeenbesenbeeaaseeeanbeeebeaeaneaanns
FXMITTIMSEIMSEATUS ...ttt ettt ea et na et e e bt et e et e et eaneeaes
FXMilTrmMessageStatus
FXMIISIOfIMESSAE ...ttt ettt ettt ettt ettt ekt e ket e e bt e e bt e e eaeeeaabeesabeeaaseeeenbeeenbeeaaseeeenbeeebeaaaseaanns
L0701 = =T €
EITOT COUES. ...ttt a bbbt b et e bt e et e e s bt e et e eh e eae e eb e e nh et e e bt et e bt e enn e
[0:0] 01 (=) 4@ o] 11013 PSPPI
CONEEXE IMOTES ...ttt ea bt bt e bt e bt e bt et e e bt e st e eabeeaeenas e e beenaeeaneenteenneenneea
B8 1 S g = g Vo[- T PSRRI
JHEEE DIFECTIONS ...ttt e ettt et a e sa bt bt e bt e s et e bt e bt e bt e s eenaneeneenbeenneenneen
Message Options...
JHEET IMIOAES. ...ttt ettt ettt e et b e e bt e b e bt e bt e et e bt e st e nan e e ne e nbeenneenneen
AUIO VPO IMOTES......cceeiee ettt h et b e ettt et a e eae e bt e s bt e bt e bttt et e et e e naeenaees
User Callback EVENt COTE BitS..........ccueiiiiiiiiiiiiie ettt re et e 110
721 = N o 0 T
AS5643 Regeneration Format
Chapter 10. 1394 API Reference 112
10.1 Serial Bus Management........c.coeuiiiiiciiiiiiiiie s s rn s s ssa s e s sma s sa s s ra s srassnnsrnnsenssennsennrnnn 112
S 7= 1 1o 112
IS =1 0= o T= o113 112
o2 oY 112

FireTrac Advanced 1394 /O Solution

FXSEtBUSRESELCAIDACK. ... oottt ettt et e bt e e eaeeesnteeeseeesneeeaneeaanns
fxGetBusGeneration..............
fxGetNumberOfNodesOnBus
FXGELLOCAINOGEIA.........eeeeeee ettt ettt ettt eeat e e s st e e et e e e aheeasaseeemseeesneeaanseeanseeeaneeaanseaanns
FXGEIMAXSPEEATONOUE. ...ttt ettt et e ettt e e ae e e s ab e e e st e e ebeeaeateeanneeeaneeaanseeanseeeaneeaanseaanns
B T 31410 o =
FXBusResetCallback ...

10.2 INbOUNA TranSaCtiONS uieieiiieiiieieieieieieisss st sasasasasasasasasaasssssssssssssssssnsarararararararares

Local Memory Access Functions
FXREAALOCAIMEMOTY ..ottt ettt et e h e e e e at e e e st e e e sate e sabeeeabeeesateesmbeeeneeesnbeeanneeanns
FXVVIELOCAIMEMOTY ...ttt ettt ettt e e bt e s et e et e e e eat e e eat e e enbe e e sabeesmbeeenneeesnbeesnneeanns
FXLOCKLOCAIMEMOIY. ... ettt ettt ettt e et e e ae e e s st e e e ab e e eate e smbeeenbeeesabeesmbeeenneeesnbeeanneeanns

TYPE DEFINItIONS ... e e e e e e e ane s

FXRequestHandlerCallback.......

FXRequestNotificatioNCallDaCK.oiiiiiiiee ettt sae e sneeenne

£ T o T
FXTranSacCtionNData..........coouiiiiiiie ettt ns
[= o o] 1T (@] o] 170 o TS F TP RPOPPRNt

Constants
Error Codes
RESPONSE COUES.......ceeiieeiiiie ettt ettt e ae e e st e e et e e he e e ea et e eae e e e bt e e eme e e e abeeeaneeesateesmbeeanbeeesnseeanneaann

10.3 OUtbOUNd TranSACHIONS.iiuiuiiiie i e rars e rassra s rarassassssatassasasssrassssassssnsassnsnssnsansnsnns

LT T 4T
LD R CET= Lo I =T =T i o S
LAY L1 C= =T =T (o o S
fxLockTransaction....
LD L= T =T =T i) o S
LD L= N I = g =T 1 o TS 128
FXGEITrAaNSACHONSIALUS.cveeeieeee ettt a e s et e e te e e eneeeneeeneesneesneenaeenneeneean 128
fxGetNumTransactions
fxGetTransactionList...

IR < LT =1 11 4o TN
FXTransactionCompleteCallDaCKcociieiiie ettt et e e eare e s b e e e reeeeaaeesnneeanns 130
LT T o T Y 130
FXTransSactioNOPLONSccccuiiiiiie ettt ettt e e e e st e e eae e e saseesaseeeaeeesaseesnseeanseeeenseesnneeanns 130
L QI =0 =T (o) Y oSS
(001 1= - Y
o oo 1Y
Transaction Status....
10.4 1SOCHroNOUS RECEPLION.......ccuiieiieiiii it s e e s s s s s s e s ra s rna s rnnsenssrnnsnnnsnnssnssennnnn
Feature Inquiry FUNCLIONS ... s 135
FXISORCVGEINUMDEIOFCONIEXESeeeiieiiiie ettt ettt e e b e e st e e s bt e e sneeesnseesnseeesneeesnseeanns 135
Reception Functions
(070701 (oS A 0o o (o F PSRRI
fXISORCVCreateContEXTHANGIE............ooiiiieieecee ettt e e enreeseee e 136
fXISORCVCIOSECONIEXTHANAIEooiiieiii ettt sate e s te e e esee e saseesneeanns 136
FXISORCYSIATTCONTEXL ...ttt ettt e e st e e e e e sateessteeeseeesaseesnseeeseeesnseesnseeanns 137
Lo R aY A (o] o070 | (=Y AR 137
FXISORCYCONIEXISLALUS ... eeeieieeeie ettt e et e e st e e sate e e st eesnteesnseeensseesnseesnseeanns 137
BUFFEI CONEIOL......eeieieie ettt ettt e et e e et e e e bt e e beeessbeeeabee e seeeasseesabeeeseeeasseeenbeesnseeeasaeenn 138
fXISORCVBUFFEIFIIAAABUTTEN ... ittt eate e st e e aee e snbeesnneeenns 140
fXISORCVPKIPErBUffErAAABUTITEN.......eieeie ettt e s enbeeeeee e 141

FireTrac Advanced 1394 /O Solution

FXISORCVDUAIBUFFEIAAABUTTETcoiiiiieiiie ettt ettt et e et e e e be e e snee e neeaen 141
fxlsoRcvLinkBuffers
FXISORCVREMOVEBUFTET ...ttt e ettt e et e e bt e et e e e bt e e saeeaaneeaens 143
FXISORCVREMOVEBUFTEIS. ...ttt e ettt e et e e bt e et e e enbeeesneeeaneeaens 143
FXISORCVBUTTErFIlIBUFfEISTALUS. ... ceiiiieieie ettt et e et e e e e e saeeesneeaens 144
FXISORCVPKIPErBUFfErBUFfErSTALUS. ... it et e eesneeeen 144
fxlsoRcvDualBufferBufferStatus
BN/ < T L= 1T o =
FXISORCVCONEXTHANGIE ...ttt e bt et e e e b e e e bt eeateeeesbeeebeaenneaanns 145
FXISORCVCAIDACK......... ettt ettt ettt e e bt e e bt e e ase e e enbeeebeeaaseeeenbeeebeeaaneaanns 145
BT T = 146
FXISORCVOPTION ...ttt ettt ettt ettt et e et e e bt e e ket e ea bt e e beeeaseeeanbeesaseeeaseeeembeeeabeeaaseeeanbeeenbeaaaneaanns 146
FXISORCVBUFTET ...ttt ettt ettt ettt e et e e bt e e se e e eabeesbeeeseeeenbeeenbeeaaseaeanbeeebeaaaseaanns 146
FXISORCVEVENTOPLONS ...ttt ettt et ettt e et e e bt e e ae e e e abee e bt e e aseeeenbeeeabeeaaseeeenbeeebeaaaseaanns 146
FXISORCVBUFTEISTATUS ...ttt ettt ettt et e e b e e e bt e e se e e enbeeebeeaaseeeenbeeebeeaaseaanns 147
FXISORCVBUFTEIrFIlIBUIfEISTALUS. ... ceitiieiiie ettt et ettt et e et e e et e e bt e e enbeeebeaeaneaenns 147
FXISORCVPKIPErBUffErBUFfEIrSTALUS. ...ttt ettt et e et e e e b e ebeeeaneae e 147
FXIsORcVDUAIBUFfErBUFfErStatUS.eoiieie et 148
FXISORCVCONIEXISTATUS ...ttt ettt ettt ettt e e bt e e bt e e te e e enbeeebeeaaneeeenbeeebeeeaneaanns 148
Constants
Buffer Modes
(0] 41 (=) 4@ o] {103 USROS 149
BUTFFEI OPTIONS ...ttt ettt ettt ettt e he e e e bt e e bt e e st e e aabeesabeeaaneeeembeeeabeeaaseeeanbeeebeaaaneaanns 151
[o] oo [PSR RRURRRRR 151
72 1 T8 o] o - 151
Buffer-Fill mode Data FOIMALSooiuiiiiiiii ettt et e et ee et e e e e e et e e e sseeesnbeeebeeeaneaans 152
With HEAAEI TIAIIET ...ttt ettt et e s he e e e bt e e bt e e st e e esbeeeabeeesseeeenbeeeaneeaanseaans 152
WithOUE HEAAEITIAIIET ...ttt ettt et e e bt e e it e e e st e e e bt e e s seeeenbeeeaneeaaneeaans 152
Packet-per-buffer mode and dual-buffer mode Data FOrmats............ccooouiiiiiiiiiiiiiiiee e 153
With HEAAEI TIAIIET ...ttt ettt et e s he e e e bt e e bt e e st e e esbeeeabeeesseeeenbeeeaneeaanseaans 153
WithOUE HEAAEITIAIIET ...ttt ettt et e e bt e e it e e e st e e e bt e e s seeeenbeeeaneeaaneeaans 153
10.5 Low-Level 1304, i s re s e rearaarearasraasmnsansanraarmnrnnranrnnrnnrnnranrnnsn 154
S T= T T 154
RESOUICE USAQE...... ettt ettt bbbt e bt e e bt e e bt e e eab e e e bt e e be e e embe e eabeeebeeesnbeesbeeaneeanns 154
LT 2 To Y 154
Asynchronous Packet Reception FUNCLIONS...........cuiiiiiiiiiiii et 154
FXASYRCVWaItSINGIEREQUEST.......eeiiiieie e et sbe e sneee e 154
FXASYRCVWaItSINGIERESPONSE. ...ttt e s e e sbe e sneeeen 155
FXASYRCVSEIPACKEICAIIDACK.coieiiiiiie e et e ae e sneee e 155
Single Packet TransmiSSIion FUNCHIONS. ..ottt b e as 156
FXASYTrmWriteQUAIBIREQUEST..........coeiieeee e
FXASYTrMWIIEEBIOCKREQUEST..... .o ettt e rbe et e e e e ae e sneeeen
FXASY TIMUVIEERESPONSE ...ttt et ettt e bt e e bt e e bt e e eab e e e be e e s abeeenbeeeneeeaneeaans
fXASYTrmReadQuAadIBtREGUEST...........c.oi e
fxAsyTrmReadBlockRequest........
fxAsyTrmReadQuadletResponse
FXASYTrMREAdBIOCKRESPONSE. ...ttt sttt et e e rbe e e ab e e enbe e e neeesneeeens
FXASYTIMLOCKREQUEST. ...ttt ettt e bt e be e e e ab e e e be e e s aeeeenbeeeneeeaneeaans
LR A 1005 LY [DTSRRI

fxAsyTrmLockResponse....
PHY Packets @nd FEGISTEIS........coiuiiiiieieie ettt ettt s bt e e be e e snbeesbeeenneeenes
fxReadLocalPhyBaseReg
fxReadLocalPhyPageReg
fxWriteLocalPhyBaseReg
FXWIHELOCAIPNYPAGEREG ... ettt ettt e bt e e ae e enbe e e neeesnneeens
fxReadRemotePhyPageReg
fxReadRemotePhyBaseReg

FireTrac Advanced 1394 /O Solution

FXPhYREMOECOMIMANG.oiiiiiiiiiee ettt ettt e e et e e eat e e et e e e see e sabeeenseaaanseesnseaanseaanns 166
fxPhySetForceRoot
FXPRYSEEGAPCOUNL ..ottt ettt et e e ab e e s aeeaeseeesabeasnseeaseeesaseaanseaaneaesnseeanseaanns
FXPINGREMOIENOGE. ...ttt ettt e et e e e ate e et e e e st e e sabeaenteeaneeesnseaanseaanns
FXPhYPacketSEtRCVCAIDACK.ooiiiiiiii ettt ettt e st e e st eaeenee e sabeaenreaenns 169
FXPRYPACKEITIMRAW ...ttt et et e e st e e e st e e sabeeemteaaneeesnbeasnneaanns 169
o] o o] (o e 1V =¥ g o3 (o] o SO 170
FXGBESEIFIADALAL ...ttt b ettt 170
FXISSUBBUSRESEL ...ttt ettt 170
B T 31410 o = 171
FXAsyRcvPacketCallback G171
FXPhYPaCKEtRCVCAIDACK.ooeieiiiieiii ettt e et e et e st e e e ae e e smeeasneeeenseeesneeaaneeaanns 171
5T T T 172
FXASYRCVPACKE. ...ttt ettt e et e e he e e s st e e e abe e e nee e enbeasnseaenseeeanseaanneaanns 172
L0701 1= - o 172
[o 0o o LSRR PR PP UPROPN 172
PHY ReMOE COMMEANGS.......ueitiiiiiiieie ettt ettt ettt s s s bt e sa e et e e s bt et e e be et e et e eaneeanenas 172
PHY Confirmation Flags
Chapter 11. Time Input Device APl Reference 174
0 T T T oY T 174
FXGetNUMDErOfTIMEINPULScoiciiiiiirir s s s s e s 174
FXGetTimeINPULINTOLIST ..o 174
fxCreate TIMeINPULHANMIEcoceiiii s s 175
fXCloSeTIMEINPULHANAIEcooieeecerr e s e s e s sne e s as e s s s e e s snn e e san e s saneaesnnensnnnasnnnnss 175
FXSEtTIMEINPULMOMUE ... s s e s s e e e ae s s e snn s mesannn 176
FXSetTimeINPULCUITENTYEAr ..ot s sn e sane 176
fxSetTimelnputFreeRUNNINGOFFS et ..o ———— 177
FXGEtTIMEINPULESLAtUS ..o e s sa s sane 177
fxSetTimelnputStatus CallDACKcccvviiiiriiiiir i s s s 177
fxSetTimelnputSecondCallback ... s 178
11.2 Type DefinitioNns.covuiiiiiii e rr s e r s s e e s e s rn s srn s e e e e e s rn s ennnnn 179
FXTIiM eINPUEHANAIE ... n s s e e e 179
FXTim eInputStatus Callbackccceviiiiiniiiiiiis s 179
FXTim eInputSecondCallDAcKccccvieeriiniiniiiis s s n s s e e 179
T~ 1 T T = 180
FXTIM@INPULINTO ... s ae e e me e me e e e me e e s n e 180
FXTIMeINPULESTAtUS ...t e s e e me s e e n e e me s e e n e 181
T S 0o T 5 1= - 1 g PPN 182
TIiME INPUL MO ...t E R s R R AR R R e R R e e e e R R R s R e R R R s ae R R e aRe s R e ae 182
£ = Lo 0T o = 183
Lo T 0o T 1= 183
Chapter 12. Examples 184
12.1 Inbound TranSaCtioNS........ccuiiiuiiiiiiir e e e e e 185
Inbound TransSaction MONILOrcccceviiiiini s s n s n e naes 185
12.2 Outbound TransSactioNs..........ccciiuiiiiiiiiir s s s s e s e e s e s n e mnnas 187
Outbound TransSaction DEM Oc.cccceiriirmiiniri e s sa e b n e s e n e ae 187
12.3 LoW-Level 1394...... e e e e s e ra tra rrarrrn e rararran

Low-level Demo
12.4 Isochronous Reception

Isochronous ReCepPtion DEM Ociiiiiiiiiiiiiir it ae s e n e s me e e nn e 191
12.5 ISOChronous TranSMIiSSION........cccuiiiiiiiiiiiiiiiir s s e s re s e rerearensnarensnnrenrnnrnnss 193
ISOChronous TranSMiSSIiON DEIMOccccciiiiiiciiirccrer e cnrr s ssser e rs s sm e e e e s s sme e s sassns s e eassanneessssnneeeesssnsenesssnnneesans 193

FireTrac Advanced 1394 /O Solution

12.6 AS5643 RECEPHION.. ..o s s r s s s r e s ra s r s e r e rean
Mil1394 Data LOgQgercccueerirerrninrsres s ssme s
Mil1394 Receive Demo
12.7 ASS5643 TranSMiSSION.......oieuiiiuiiieiiri i i riar e e rrm s rrma s rna s rnassseasssamsssenassennssrnnsssensssennnsnen
Mil1394TranSMit DEIM O ...coceiiiiiiii i e e e e b a e e ae e e e bR e R e saae e e m e e e s nn e s 201
12.8 AS5643 COCKPIt DEMO.......oeeiiieiiiiici s s s rn s rn s e s e s e s na s smsssassrassrassnnsrnnsenssennsennrnnn 208
AS5643 Control Computer EXamPIeccvviiimniiriiniis s s s sss s ss s s s ssssssse s 208
728 T 5 (= 4 =t TN 213
T =Y T LN 11 1= 213
Chapter 13. FireStack Release Notes 215

10

FireTrac Product Family

Chapter 1. FireTrac Product Family

The FireTrac® product family complements DapTechnology’s successful FireSpy® and AS5643 OHCI host
adapter product lines. It clearly is the next generation SAE AS5643 data processing, simulation and testing
solution.

DapTechnology has seen an increasing demand for more streamlined hardware systems for the processing of
AS5643 (and generic 1394) data streams. Customers get increasingly involved in monitoring the actual data
content rather than the 1394 layer. And for simulation purposes, they require advanced error insertion
capabilities that can only be accomplished with non-off-the-shelf Link Layer implementations. IRIG time-
stamping of monitored events on the bus is a typical requirement.

FireTrac® is the answer for this market need. It is designed to natively (not just as an add-on protocol)
support AS5643. Besides the standard IEE1394 features, FireTrac® has been architected to provide hardware
level support for SAE AS5643 which reduces host processor burden, specifically for packet encapsulation,
data extraction, receive/transmit STOF offsets, etc. As a key example, FireTrac® handles AS5643
transmission timing entirely in hardware therefore making it a lot more accurate. It is important to understand
that FireTrac® is a dedicated and optimized solution for the processing of AS5643 type traffic. Support for
this protocol is embedded in the hardware and not just in a software layer, as is provided with other solutions
that rely on COTS OHCI chipsets.

In order to get the best out of the unique feature set of the FireTrac® card DapTechnology recommends using
the hardware in combination with FireStack®, i.e. DapTechnology's home grown software stack. FireStack
optimally supports the hardware and firmware layers embedded into FireTrac. As FireTrac’s® host interface
uses FireLink Extended (and not a standard OHCI Link Layer chip) functionality that has been tailored and
optimized for the support of the AS5643 standard brings the combination of FireTrac® and FireStack® to an
entirely new level.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 11

FireTrac Product Family

1.1. Network Simulation

The FireTrac® product family offers a large variety of how these I/O cards can be used to start, expand, and
grow a simulation environment for AS5643 devices. While architecturally identical, the different channel
numbers allow for a vast variety of configurations. Please note that the arguments presented below
predominantly address triple redundant network systems, yet can relatively simply be adapted for system
redundancies lower or higher than three (3).

4-node FireTrac®:

The 4-node version(s) of FireTrac® is perfectly suited for use as a CC. As the picture below demonstrates the
4-node architecture is ideal to simulate a 3-branch CC including the interface for the CCDL. Using three
FireTrac® cards (blue) a full and triple-redundant arrangement for control computers can be realized.

Paired with a triple redundant RN implementation using 3-node FireTrac® (displayed in green) one can easily
build a minimal yet expandable instantiation of an AS5643 network consisting of CCs with CCDL and RNs.

CCDL
! [...] ’
ARE! AAE! AR
D1N4 CCZ D1N4 D1N4
DIN2|[D1IN3 : DIN2|[D1IN3 DIN3
ABIEREmeEAEBRRERA! AR
: ! |
]
[eTeTs 'RN1 B
D2N1 D2N2 B
RI\|2| o [T
—_ e
e png [RLE ARA
{1 D4N1 7 D4N2 - B D4N3

However, the abowe is only an implementation variant. A 4-node FireTrac® can also be used to simulate
single branch bus behavior (left and middle) or mixed CC/RN situation in double redundancy (right).

CcC cC CC1 CC2
DIN1||DIN2 D1N3§ DiIN1 DiIN1 DiIN1
BAA|ERABAA HAE {BRE aBHE
[BB B
BB ARB BB BB
D2N1 RNl D2N1 RN]‘ (I)Jzt\llz RNl ODZt\llz

=

Bl

D3N1 RN2

L

AR

D4N1 RN3

12

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

FireTrac Product Family

3-node FireTrac®:

The 3-node ersion(s) of FireTrac® is best suited to address triple-redundant and triple-branch architectures
when no CCDL is needed. The picture below demonstrates how such a system can be arranged in different

RN configurations by using just a few 3-node FireTrac® cards (green).

cC1 cc2 cC3
DIN1||DIN2||DIN3 DIN1|[DIN2|[|DIN3 DIN1|[DIN2|[|DIN3
H3R|BABIEAE R BARIEARIEA A BARIGAR|BAAS
| =
HRE|BEREER i ER|BRE|AREFR BEE|BER|HRR
D2N1 [|D3N1 || D4N1 D2N2 [[D3N2 || D4N2 D2N3 [D3N3 || D4N3
RN1-RN3 | RN1-RN3 | RN1-RN3
[rna LT [
D5N1 D5N2 D5N3

Other variants of how a single 3-node FireTrac® card can be used are depicted below. The left shows a CC
devices simulating the triple bus interface (3 CC) whereas the right pictures demonstrates a possible single-
branch usages model (CC + 2 RNs).

CC

[Dint

DIN2

DIN3|

i[plpp
§0|1|2
f

ARAE
o|1|z;
T]

oL
1
|

RN1

RN2

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

13

FireTrac Product Family

1.2. Simulating AS5643 CCs and RNs

SAE AS5643 describes two types of device categories Control Computers (CC) and Remote Nodes (RN)
whose functional definitions depend on the assigned tasks with respect to network communication and
integrity verifications. Supporting both device types is an integral objective for FireTrac® and FireStack® and
the FireStack API provides feature rich function calls for both categories in parallel. This way the implementer
can focus on the AS5643 functional requirements for either CC and RNs. FireStack® doesn’t put the device in
a specific operational mode (either CC or RN) but all related functions and functionalities exist in parallel and
— for a multi-node device can used independently per node. Example applications are (or will be made)
available to demonstrate both scenarios.

However, it is also important to understand that FireTrac® is not just a dedicated “AS5643 device”. It is also
a fully compliant IEEE-1394 device. In particular this is important because next to the Asynchronous Streams
(which are used for the Asynchronous Subscriber Model (ASM)) FireStack® also supports Asynchronous as
well as Isochronous Messaging. Both are optional for the usage in AS5643. But due to its guaranteed quality-
of-senice the Asynchronous messaging seems to be the logical choice for Cross-Channel-Data-Link (CCDL)
implementations. And video/audio streaming in conjunctions with ASM traffic is seen as a future growth path
for future variants of AS5643.

Mandatory | Mandatory

N .
I . : > ode operation for CC for RN
: 3 9 4 Initialization v v

STOF Generation Vv
Asynchronous |—» typically used System Integrity
for CCDL Management =

STOF Synchronization -

Video and audio

Isochronous Internal STOF Timing

<< <

streaming
ASM-Message \/
A h Generation
syncnronous ‘ P [ASM-Message Receive
ASYnC Streams —’ Subscriber Model &IntegrityVaIidationIV v
HW Failure Detection \/

14 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

FireTrac Product Family

1.3. FireTrac4424bT

The FireTrac4424bT implements a 4-bus AS5643 Interface Solution in x4 lane Gen2 PCI Express form factor.

FireTrag

1.3.1. Software Requirements

Important Version information

Depending on the FireTrac4424bT board version you may need to install a minimal software version. Please
have a look at the following table to look up which software version is required based on the serial number of

your card.

FireTrac Version Software support Serial number starts with
FireTrac4424bT V1R1 FireTrac software 2.1.3 and later B-081-

FireTrac4424bT1 V1R1 (S100-S200)FireTrac software 2.1.3 and later B-082-

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 15

FireTrac Product Family

1.3.2. Architecture

The hardware consists of a PCl Express card with four (4) independent physical layer chipsets (transformer
coupled) and off-board cable harnesses. Optionally, the harnesses can be connected to a 1U 19” rack
mountable panel.

1394-Beta,
transformer coupled,
SFF-8614
o . 0 g] -
FireLink_Ext PHY D BRI L
LLC_iP y =] =
3 Ports A0 — DO
O
@® S . -
PCle o || FireLink_Ext PHY C [11 E {
2.0 x4 g LLC_IP B | =
' S 11 Ports A1 — D1
5 (
FireLink_Ext o[B¢ | o
2 — PHY_B j
-U LLC_|P - ; {E_ i — ——
J§> : Ports A2 — D2
| FireLink_Ext oLB%
LLC_IP PHY_A 1%
_ TR
I
PCle | FLASH grlﬁc SUB-D

1394 Bus Interface

The 1394 Physical Layer interface consists of four (4) Physical Layer chips (TSB41BA3 from Texas
Instruments), active transformers (Pulse) on all twelve (12) ports and three (3) SFF-8614 style off-board
connectors. The four (4) instantiations of Link Layer Controller (LLC_IP) utilize DapTechnology’s FireLink
Extended LLC core that together with the AS5643 Extension module.

For this version of FireTrac® DapTechnology has opted to implement innovative off-board connectivity. Rather
than reusing the SCSI2 connector (used on the FT3460bT) the FT4424bT uses SFF-8614 connectors.

SFF-8614 originates from the miniSAS HD interconnectivity technology and has proven its benefits with
regards to signal integrity, data throughput, durability and usability.

Customers will benefit for the selected port-to-connector routing (A0-DO, A1-D1, A2-D2) as the need for
cables can be adjusted to the specific usage scenario, therefore simplifying harnesses and reducing costs for
unneeded cables.

For example, with just one (1) harness the ‘0”-ports on all 4 nodes (A-D) can be connected as leave nodes.
Additional harnesses would only have to be added for daisy-chain or star connectivity.

IRIG Timing

IRIG Timing input is provided via an external signal input. IRIG B time stamping is attached to every single
packet.The IRIG decoder decodes the following formats and generates a timestamp for each recorded packet:
¢ [RIG-B122 (IEEE1344)

¢ [RIG-B002 (IEEE1344) TTL

¢ [RIG-B002 (IEEE1344) RS422

External Frame Synchronization
Each 1394 Link has an individual Top Of Frame Input connector associated with it. An input signal can be
used to synchronize the AS5643 timed packet transmission to an externally applied Top Of Frame input

16

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

FireTrac Product Family

signal. These connectors can also be configured as Sync output signal generator.

Direct Memory Access Transfer (DMA)

Data collected in the internal FIFOs (or DPRams) is transferred via DMA burst-block transfers. Bus mastering
ensures that the PCl Express device transfers data without any CPU interaction. Optionally, interrupts can be
enabled via register settings in order to notify the high-level application about new data availability.

PCI Interface (DMA)

The PCl interface utilizes an IP core from PLDA and is PCI-X Specification 2.0a mode 1 compliant. The core
is also PCI specification 3.0 compliant. 32-bit/64bit PCI-X & PCI master/target interface. Bus speed support
up to 133MHz (currently only 100MHz supported). Actual implementation details can be found in the next
section.

Cable/Harness

In order provide a wide variety of connectivity options — either to additional FireTracs or to other AS5643
equipment, DapTechnology offers a set of harnesses / interconnectivity options.

For example the 19"-breakout panel as depicted below offers an extremely flexible way to connecting bus
devices via 1394b bilingual sockets. Such a “patch”-panel can also be configured with LEMO or 38999
sockets depending on the customer’s interconnectivity preferences.

Beside the 19"-panels DapTechnology will offer also a series of “patch-cables”. For examples, the SFF-to-
SFF cable shown below can be used to effectively daisy-chain sewveral FireTracs (ports A0-DO to A1-D1) with
just one single harness. Other variants include fan-out cables with Bilingual or 38999 connectivity. No
termination variants are also available).

The selected connector/cable choices offer a large variety of options and cannot displayed in its entirety.
Please check on the web for more variants and/or consult with our sales specialists regarding your specific
needs, length and connector options. Cables for FireTrac4424bT cards need to be ordered separately. Please
consult http://www.daptechnology.com for available cable configurations or contact

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 17

http://www.daptechnology.com

FireTrac Product Family

support@daptechnology.com.

1.3.3. Dip Switches

SW601 - Flash selection for firmware boot
Location: Back side of the card lower-left quadrant
Positions:

e Main Flash: Start the normal firmware position

e Fallback Flash: Start the fallback firmware position

SW602
Location: Back side of the card top-left quadrant

Positions:
¢ Not yet used

1.3.4. Fall-back firmware

If a firmware update was unsuccessful or cannot be updated, a fall-back version of the firmware can be used

to recover the FireTrac4424bT device.

Turn off the host machine and remowe the FireTrac4424bT device. On the FireTrac4424bT, place the dip
switch SW601 in the Fallback Flash position. Plug the FireTrac4424bT back into the host machine and turn it
on. The FireTrac4424bT will now install the fall-back firmware which is stored on the device itself. In Windows,
open the Admintool, which is installed with the FireTrac4424bT software.

B ' FireStack Administration Tool

5-FT3460bT (B-033-1306-000)
: 5----License
2)-General

L Certificates

Flash ID
Flash Factory ID | 69:00:00:00:b&:c0:al1:2f
Firmware Status:

Chedk

pdate

Select the Firmware tab, and click Update. This will install the latest version of the firmware. After the
Admintool has completed updating the firmware, turn off the machine and place the dip switch SW601 back
in the Main Flash position. After booting the machine the FireTrac firmware is up to date.

18

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

mailto:support@daptechnology.com

FireTrac Product Family

1.4. FireTrac3460bT

The FireTrac3460bT implementes a triple-bus AS5643 Interface Solution in PMC form factor. DapTechnology
is constantly trying to improwve its products and as a result the FireTrac3460bT is currently at its 3rd board
revision. Please refer to the pictures below for the different board versions.

.,

-

FireTrac3460bT Version 2 (FT3460T_V2R1) o

(replaced by V3) FireTrac3460bT Version 1 (FT3460T_V1R1)
(replaced by V2)

1.4.1. Software Requirements

Important Version information

Depending on the FireTrac3460bT board version you may need to install a minimal software version. Please
have a look at the following table to look up which software version is required based on the serial number of

your card.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 19

FireTrac Product Family

FireTrac Version Software support Serial number starts with
FireTrac3460bT V3 (S100-S200) FireTrac software 2.0.10 and later |B-080-

manufactured after 01/01/2019

FireTrac3460bT V3 manufactured |FireTrac software 2.0.10 and later |B-079-

after 01/01/2019

FireTrac3460bT V3 (S100-S200) FireTrac software 0.98.4 and later |B-036-

FireTrac3460bT V3 FireTrac software 0.98.4 and later |B-033-

FireTrac3460bT V2 FireTrac software 0.20 and later B-025-

FireTrac3460bT V1 All software versions B-024-

1.4.2. Architecture

The hardware consists of a PMC card with three independent physical layer chipsets (transformer coupled)
and an off-board cable harness. Optionally, this harness can be connected to a 1U 19” rack mountable panel.

PMC cards can be easily used on different form factor (PCI, PXl, cPCI, VME, ...). Based on future
requirements, DapTechnology will also develop direct PCI or other adapter cards.

M N J— . .
IRIG g] OF
- _ o &
PHY —] Trans.] g o)
= Bl 51t d <
Xilinx FPGA L 1 O 6
P, PHY — Trans. 1 & SO
— o §
PHY E Trans. — 3 SO
i — —
Cable Harness &
PMC card 19" panel

1394 Bus Interface
The 1394 Physical Layer interface consists of three Physical Layer chips (TSB41BA3 from Texas
Instruments), active transformers (Pulse) on all nine ports and one SCSI-2 style off-board connector.

IRIG Timing
IRIG Timing input is provided via an external signal input. IRIG B time stamping is attached to every single
packet.

External Frame Synchronization

Each 1394 Link has an individual Top Of Frame Input connector associated with it. An input signal can be
used to synchronize the AS5643 timed packet transmission to an externally applied Top Of Frame input
signal. On FireTrac V3 and later these connectors can also be configured as Sync output signal generator.

Direct Memory Access Transfer (DMA)

Data collected in the internal FIFOs (or DPRams) is transferred via DMA burst-block transfers. Bus mastering
ensures that the PMC device transfers data without any CPU interaction. Optionally, interrupts can be
enabled via register settings in order to notify the high-level application about new data availability.

On-Board Memory

Your FireTrac3460bT may or may not contain an on-board QDRI SRAM module of 9MB. Since this module is
not used in any way, since 01/01/2019 it is no longer placed. *)

A tiny battery-backed configuration memory is used to store important fixed device-specific configuration data
**). This memory is written during the production process and is not used in any way to store additional/new

20

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

FireTrac Product Family

information after that.

An on-board FLASH chip is available that holds firmware to be loaded into the FPGA on system startup time.
This memory is only used to store new firmware updates and license certificates.

All memory can be sanitized by the end-user except card-specific configuration data written during production
of the card.

*) Only on FireTrac3460bT version 2 (FT3460T_V2R1) and 3 (FT3460T_V3R1) delivered before 01/01/2019.
This memory is no longer placed.
**) Only on FireTrac3460bT version 3 (FT3460T_V3R1)

Cable/Harness
Cables for FireTrac3460bT cards need to be ordered separately. Please consult http://
www.daptechnology.com for available cable configurations or contact support@daptechnology.com.

1.4.3. Firmware
The following provides an overview of the FireTrac3460bT AS5643 FPGA firmware.

Firmware
<4—p RIGE «—
Status & IRIG In
< Control
Register
¢ TOF In
<«
\ PC|] M | oma FireLink LLC (Bus A b
PCI Bus Inter-
face
/ v v : TOF In o
S
P | DumaA FireLink LLC ¢ Bus B > £
=
a
* * TOF In
<«
P> | oua FireLink LLC - Bus C S

FireLink Extended Mil1394 Only

The three instantiations of Link Layer Controller (LLC) utilize DapTechnology’s FireLink Extended LLC core
that together with the AS5643 Recording and Simulation Logic, the integrated IRIG controller and DMA engine
form the centerpiece of the FireTrac3460bT AS5643 hardware and firmware.

IRIG Decoder Module
The IRIG decoder decodes the IRIG B122 and IEEE1344 standard and generates a timestamp for each
recorded packet.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 21

http://www.daptechnology.com
http://www.daptechnology.com
mailto:support@daptechnology.com

FireTrac Product Family

PCI Interface (DMA)
The PCl interface utilizes an IP core from PLDA and is PCI-X Specification 2.0a mode 1 compliant. The core
is also PCI specification 3.0 compliant. 32-bit/64bit PCI-X & PCI master/target interface. Bus speed support
up to 133MHz (currently only 100MHz supported). Actual implementation details can be found in the next

section.

1.4.4. Connector pinning

68p SCSI Il Connector Pinning

Pin Number Signal

42

43

8

9

39

40

5

6

36

37

2

3

54

55

20

21

51

52

17

18

48

49

14

15

66

67

32

33

63

64

29

30

60

61

26

27

23

24

57

58

45

46

1,4,7, 10,
13, 16, 19,
22, 25, 28,
31, 34, 35,
38, 41, 44,
47, 50, 53,
56, 59, 62,
65, 68

Name

PHY A TXOp
PHY A TXOn
PHY A RXOp
PHY A RXOn
PHY A TX1p
PHY A TX1n
PHY A RX1p
PHY A RX1n
PHY A TX2p
PHY A TX2n
PHY A RX2p
PHY A RX2n
PHY B TXOp
PHY B TXOn
PHY B RX0p
PHY B RX0On
PHY B TX1p
PHY B TX1n
PHY B RX1p
PHY B RX1n
PHY B TX2p
PHY B TX2n
PHY B RX2p
PHY B RX2n
PHY C TX0p
PHY C TXOn
PHY C RX0p
PHY C RXOn
PHY C TX1p
PHY C TXIn
PHY C RX1p
PHY C RX1n
PHY C TX2p
PHY C TX2n
PHY C RX2p
PHY C RX2n
SYNC A
SYNC B
SYNC C
SYNC GND
IRIG IN

IRIG GND
EARTH

22

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

FireTrac Product Family

Sync A, B and C signal input and output* characteristics

Tabel Limiting values

Symbol Parameter Min Max Unit
Vin Input voltage -0.5 +12 Vv
lo Output current 150 mA
Tabel Recommended operating conditions
Symbol Parameter Min Max Unit
Vin Input voltage 0 5 Vv
Vout Output voltage |0 5
Tabel Static characteristics
Conditions Min Max Unit
VIH HIGH-level 2.0 \
input voltage
VIL Low-level 0.8 \Y
input voltage
VOH HIGH-level lo =50pA 4.9
output
voltage
VIL LOW-level lo =50pA 0.1
output
voltage

*) Output is only available on FireTrac V3 and later hardware revisions. Output impedance is 100

Ohm

1.4.5. Jumpers

The FireTrac3460bT V1R1 has two jumpers, J1 and J4. Their positions are shown below. Actual jumpers are

not shown.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

23

FireTrac Product Family

J1, (FireTrac3460bT V1 only) when placed, protects the FLASH memory from being overwritten.
J4, when placed, forces the use of the fall-back firmware when a firmware update was unsuccessful.

Firetrac3460bT V1R2 and V2Rx hawe a switch block SW1 and jumper J4 as shown below:

24 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

FireTrac Product Family

SW1

SW1 switch number 4, when enabled, protects the FLASH memory from being overwritten
J4, when placed, forces the use of the fall-back firmware when a firmware update was unsuccessful.

On FireTrac3460bT V3 a different Flash memory type is used for improved security of the firmware. This
particular type does not allow hardware write protection. Although SW1 is still on the board its switch
number 4 is not connected to the Flash memory but to the FPGA instead for future feature expansion.

1.4.6. Fall-back firmware

If a firmware update was unsuccessful or cannot be updated, a fall-back version of the firmware can be used
to recover the FireTrac3460bT device.

Turn off the host machine and remowve the FireTrac3460bT device. On the FireTrac3460bT, place the jumper
on J4 as shown in Jumpers. Plug the FireTrac3460bT back into the host machine and turn it on. The
FireTrac3460bT will now install the fall-back firmware which is stored on the device itself. In Windows, open
the Admintool, which is installed with the FireTrac3460bT software.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 25

FireTrac Product Family

FireStack Administration Tool

? x>

-FT3460bT (B-033-1306-000)

Flash ID

i olicense Flash Factory ID | 69:00:00:00:b8:c0:al:2f

—-General

- Certificates Firmware Status:

Chedk
pdate

Select the Firmware tab, and click Update. This will install the latest version of the firmware. After the

Admintool has completed updating the firmware, turn off the machine and remowve the jumper from J4. After
booting the machine the FireTrac firmware is up to date.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

FireTrac Product Family

1.5. Specifications
FCC Class A Compliance

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to
part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful
interference when the equipment is operated in a commercial environment. This equipment generates, uses,
and can radiate radio frequency energy and, if not installed and used in accordance with the instruction
manual, may cause harmful interference to radio communications. Operation of this equipment in a residential
area is likely to cause harmful interference in which case the user will be required to correct the interference
at his own expense.

Modifications not expressly approved by the manufacturer could woid the user's authority to operate the
equipment under FCC rules.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 27

Softw are Overview

Chapter 2. Software Overview

2.1. VxWorks

2.1.1. Introduction

On the VxWorks platform, the hardware device driver(s) and FireStack software library are rolled into a single
kernel based application module (or DKM): (firestackmil1394.out).

Various development tools, including the debugger and the shell (host or target), can be used to download
and manage the firestackmil1394 module. Once it has been loaded into the target, it initializes itself and
the FireStack functions become available to other kernel-based application modules or the target shell.

Loading the FireStack

In this introduction we will demonstrate how to load the FireStack DKM using the target shell. The actual path
depends on your installation, target connection and object path mappings. This is what it might look like for
an MV6100 SBC (PPC604 architecture) running wxWorks 5.5:

-> 1d < firestackmill394 2 1 10 ppc604 vxworks5.5/bin/firestackmill394.out
Loading firestackmill394 2 1 10 ppc604 vxworks5.5/bin/firestackmill394.out

value = 17013096 = 0x1039968

The FireStack as a static library

The FireStack package for some targets includes a static library version of the FireStack software,
libfirestackmil1394.a. This library can be linked against your application or the wxWorks kernel image as
an alternative to the DKM binary. The static library version of the FireStack software should be considered
experimental. It is the responsibility of the user that not more than one instance of this library is loaded.

Interaction with the FireStack
This is an example target shell session showing how to probe the number of FireLink busses on an installed
FireTrac card(s):

-> ret = fxInitialize()

New symbol "ret" added to kernel symbol table.
ret = 0x496e00: value = 0 = 0x0

-> numBuses = 0

New symbol "numBuses" added to kernel symbol table.
numBuses = 0x496df8: value = 0 = 0x0

-> ret = fxGetNumberOfBuses (0x496df8)

ret = 0x496e00: value = 0 = 0x0

—-> numBuses

numBuses = 0x496df8: value = 3 = 0x3

->

In this case, one FireTrac card was installed, with three FireLink busses.

Loading a pre-compiled FireStack example
Next, we load a pre-compiled example, 'mil1394datalogger’ from the host computer:

-> 1d < firestackmill394 2 1 10 ppc604 vxworks5.5/bin/mill394datalogger.out
value = 71657296 = 0x4456750 = 'P'

-> main

Bus[0]: Opened

Bus[0]: Channelmask: 1111100000000000000000000000000100000000000000000000000000000000
Bus[0]: anyChan: 0, channel: 31, anyMessID: 1, messID: Oxffffffff, context: 0x00000401
Bus[0]: anyChan: 0, channel: 0, anyMessID: 1, messID: Oxffffffff, context: 0x00000401
Bus[0]: anyChan: 0, channel: 1, anyMessID: 0, messID: 0x0000000b, context: 0x00000401
Bus[0]: anyChan: 0, channel: 2, anyMessID: 0, messID: 0x0000000c, context: 0x00000401
Bus[0]: anyChan: 0, channel: 3, anyMessID: 0, messID: 0x0000000d, context: 0x00000401
Bus[0]: anyChan: 0, channel: 4, anyMessID: 0, messID: 0x0000000e, context: 0x00000401
Bus[0] Context[00000000]: Options: 1, bufferCB: 1

28

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

Softw are Overview

Bus[1l]: Opened

Bus[1] Channelmask:

Bus[1] anyChan: 0, channel: 31,
Bus|[1] anyChan: 0, channel: 0,
Bus|[1] anyChan: 0, channel: 1,
Bus[1] anyChan: 0, channel: 2,
Bus[1] anyChan: 0, channel: 3,
Bus|[1] anyChan: 0, channel: 4,
Bus[1l] Context[00000000]: Options:
Bus[2] Opened

Bus[2] Channelmask:

Bus[2] anyChan: 0, channel: 31,
Bus[2] anyChan: 0, channel: 0,
Bus[2] anyChan: 0, channel: 1,
Bus[2] anyChan: 0, channel: 2,
Bus[2] anyChan: 0, channel: 3,
Bus[2] anyChan: 0, channel: 4,
Bus[2] Context[00000000]: Options:
Bus[0] Context[000000007:

Bus[1l] Context[000000007:

Bus[2] Context[000000007:

1111100000000000000000000000000100000000000000000000000000000000

anyMessID: 1,
anyMessID: 1,
anyMessID: O,
anyMessID: O,
anyMessID: O,
anyMessID: O,
1, bufferCB:

messID:
messID:
messID:
messID:
messID:
messID:

1

Oxffffffff,
Oxffffffff,
0x0000000b,
0x0000000c¢,
0x0000000d,
0x0000000e,

context:
context:
context:
context:
context:
context:

0x00000901
0x00000901
0x00000901
0x00000901
0x00000901
0x00000901

1111100000000000000000000000000100000000000000000000000000000000

anyMessID: 1,
anyMessID: 1,
anyMessID: O,
anyMessID: O,
anyMessID: O,
anyMessID: O,
1, bufferCB:

Started Reception
Started Reception
Started Reception

messID:
messID:
messID:
messID:
messID:
messID:

1

Oxffffffff,
Oxffffffff,
0x0000000b,
0x0000000c¢,
0x0000000d,
0x0000000e,

context:
context:
context:
context:
context:
context:

0x00000e01
0x00000e01
0x00000e01
0x00000e01
0x00000e01
0x00000e01

In this case, a DapTechnology FireSpy (3810) has been connected to each of the three FireWire buses
opened by the mil1394datalogger example. As soon as the FireSpy application configures the FireSpy 3810,
we see the bus reset this causes. We proceed to load the sendpackets. £fss script into the FireSpy scriptor
and send some packets:

Bus[2] Bus Reset Detected

Bus[1] Bus Reset Detected

Bus[0]: Bus Reset Detected

Bus[0] Cntxt[0] Channel[0]
[0x00000000] [0x12345678]
[0x00000001] [0x00000000]

Bus[0] Cntxt[0] Channel[0]
[0x00000000] [0x12345678]
[0x00000001] [0x00000001]

Bus[0] Cntxt[0] Channel[0]
[0x00000000] [0x12345678]
[0x00000001] [0x00000002]

[0x0000000
[0x0000000

[0x0000000
[0x0000000

[0x0000000
[0x0000000

1]
0]

1]
0]

1]
0]

[0x01000100]
[0x00000000]

[0x01000100]
[0x00000000]

[0x01000100]
[0x00000000]

For more comprehensive examples we refer to the example source code that comes with the FireStack

software distribution.

2.1.2. Supported Platforms

The DapTechnology firestackmil1394 software is supported on the following hardware platforms and VxWorks

versions:

Single Board Computer

Architecture

VxWorks version

5.5 6.2 6.8 6.9
VMetro M6000 PPC440 .
Emerson MV6100 PPC604
Motorola MV6100 PPC604 . o . .
Motorola MV7100 PPC604 . .
RadStone PPC7D PPC604 .

Contact support@daptechnology.com if your Single Board Computer or VxWorks version is not on this list.

There's a separate build for each architecture and VxWorks version, and care must be taken to load the
correct module on each system.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

29

mailto:support@daptechnology.com

Softw are Overview

PPC EABI memory limitations
For all platforms, the module has been built using the 'longcall' calling convention to enable the full 32bit
address range.

PCI Configuration

Most Single Board Computers perform limited PCI configuration. In general, the BSP (Board Support
Package) only configures PCI-PCI bridges and devices on the SBC itself. Some assume a fixed PCI topology,
and use hard-coded PCI bus- and device numbers to address PCI devices. Many have limited or no support
for PCI interrupt sharing.

This makes the DapTechnology PMC341bT a challenging device to support on wxWorks platforms. It contains
a PCI-PCI bridge, with three OHCI link layer devices on the secondary PCIl bus segment. It uses three PCI
interrupt lines (INT A ... INT_c) where most PCl adapters only use INT a. This may result in interrupt sharing
between the PMC341bT and an adapter in the other PMC site, or an on-board PCI device.

The FireStack software constructs the PCI topology starting from the PMC site(s), configures PCI-PCI bridges
where necessary and routes interrupt lines. It also implements PCl interrupt sharing between the devices it
supports, but interrupt sharing between a FireStack device and an on-board device (or third party device in
another PCI site) ultimately depends on BSP support.

2.1.3. Device specific notes

FireTrac (FT3460bT)

Make sure the PMC slot is operating no faster than 100MHz PCI-X mode. The FireStack software will check
the PCI speed that the FireTrac is running at and if this exceeds 100MHz PCI-X mode it will print an error
message similar to this when the FireStack software is loaded:

FireTrac in PMC2 set to 133MHz PCI-X mode, limit is 100MHz
PCI device configuration failed for PCI(1:7:0)

It may be possible to restrict the PCI-X speed of the PMC sites. Refer to the user manual of your single board
computer and the next section of this manual.

2.1.4. Platform specific notes

VMetro M6000

The VMetro M6000 defaults to 133MHz PCI-X mode. Refer to the section "PCI-X Capability Selection for PMC
Slots" of Appendix A3, "DIP Switch Settings" in the VMetro Hardware Guide to configure the PMC slot(s).
When the VMetro system is started, it prints a hardware inventory. Assuming a FireTrac card installed in
PMC slot #1 (the rightmost slot), it can be recognized by this output:

PCI: Segment Configuration
PPC440SP PCI Bus#0 (Slot#l + PCIe Bridge) 100 MHz PCI-X (1.0)

[...]

PCI: Mezzanine Vendor Device Rev Type
Slot#1l 0x194a 0x1202 03 PMC
Slot#2 No device

[...]

The FireTrac V2 device has PCI vendor ID 0x194a (DAP Technology) and device ID 0x1202.

Motorola MV7100

On the Motorola MV7100, several PCI interrupt pins are routed to interrupt line #3:

e INT A of the Tsi148 VMEbus controller

e INT C of PMC site #1

e INT B of PMC site #2

This means that the third OHCI bus of a PMC341bT installed in PMC #1 (or the second OHCI bus of a
PMC341bT in PMC #2), shares an interrupt line with the VMEDbus controller. If this OHCI device raises an
interrupt, it will be delivered to the handlers of both FireStack and the VMEbus controller. The VME handler

30

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

Softw are Overview

was not written with interrupt sharing in mind and will issue the log message VME interrupt with no
cause. If this happens it is best to comment out this log message (in sysTempeVmelntr.c) and rebuild the

vwWorks image.

RadStone PPC7D

By default PMC2 is configured for 133MHz PCI-X mode (this is the PMC site closest to the CPU). PMC1 runs
at 100MHz PCI-X mode and is the recommended place to install a FireTrac card.

The default configuration of the RadStone PPC7D BSP limits available system memory to 32MB. With the
default xWorks image and the FireStack binary loaded, only 20MB RAM is left for DMA buffers. This is not

enough to run the pre-compiled Mil1394datalogger example.

Refer to the 'Memory' section of the 'Radstone PowerX Platforms/Tornado BSP Manual' to find out how to

make all installed memory available to wxWorks, or reduce the value of BUFFERS PER CONTEXT in the

datalogger.h file of the Mil1394datalogger example to reduce the memory requirements of the example.

2.1.5. Configuration Flags

Under normal circumstances the FireStack software does not generate any output except in case of fatal

errors. It is possible to get more verbose output from the FireStack software when it probes and configures
supported hardware. This is implemented using the boot loader 'flags’, specifically SYSFLG_VENDOR_0

(0x1000).

To set boot loader flags, you hawe to interrupt the boot process and press 'c' to start configuration. Here's a

sample session where the flags are changed from 0x0 to 0x1000:

A8 Terminal 1 23 BT puild Cnnsole} [EJ_] Historﬂ = Target Consoles} ,EE Remote Sysken Details}

=0

Serial: (COM3, 9600, 8, 1, Mone, Mone - COMMECTED)

=il

H
EHE

#- -

[VxWorks Boot]: o

"'oY = gclear field; '—' = go to previous field: D = gquit
hoot device : geiscO

processor nunber HE|

host name H

file name : wvel00-diab-vxworkss5,5/default/vxlorks

inet on ethernst ()
inet on kbackplane (kb):
host inet (h)

gateway inet (gl

user (u) H
ftp password (pw)] (blank = use rsh):
flags (£) : 0x0 0x1000 |

Carget nate [t : mwweloo
startup script (2) H
other (o)

[VxWorks EBoot] :

=

Then, when the FireStack library is downloaded, the output is similar to this:

-> 1d < firestackmill394 0 98 7 ppc604 vxworks5.5/bin/firestackmill394.out

DapTechnology firestackmill394 version 0.98.7
Build date: Jun 6 2014, 14:43:11
Configured for vxworks version 5.5 [CPU=ppc604]
Supported single board computers:
Motorola MVME6100
GE Fanuc - PPC7D
Supported devices:
194a2:1201/0000:0000 FireTrac 3460bT (fallback firmware)
194a:1202/0000:0000 FireTrac 3460bT
194a:1203/0000:0000 FireTrac 3460bT (fallback firmware)

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

31

Softw are Overview

194a:
194a:
104c:
104c:

1215/0000:
1216/0000:
8025/19%4a:
8025/19%4a:

0000
0000
1001
1002

S1600 1394 Host Adapter
S1600 1394 Host Adapter
PCI341bT OHCI Compliant
PMC341bT OHCI Compliant

Card

Card (Fallback firmware)
Host Adapter

Host Adapter

104c:823f/194a:1003 FCG183PCIe OHCI Compliant Host Adapter
194a2:1219/0000:0000 FireTrac 3460bT
194a:1220/0000:0000 FireTrac 3460bT (fallback firmware)

Probed Motorola MVME6100-0173 - MPC 7457

Configure Motorola MVME6100 [BSP 1.2/5]

Probed PMC341bT OHCI Compliant Host Adapter in PCI(3:4:0)

Probed PMC341bT OHCI Compliant Host Adapter in PCI(3:5:0)

Probed PMC341bT OHCI Compliant Host Adapter in PCI(3:6:0)

Probed FireTrac 3460bT in PCI(2:6:0)

Configure PCI(3:4:0): revision 1, PMC 1, offset 8, vector 0x00000050

Configure PCI(3:4:0) enable big endian operation

Configure PCI(3:5:0) revision 1, PMC 1, offset 9, vector 0x00000051
Configure PCI(3:5:0): enable big endian operation

Configure PCI(3:6:0): revision 1, PMC 1, offset 10, vector 0x00000052
Configure PCI(3:6:0) enable big endian operation

Configure PCI(2:6:0) revision 3, PMC 2, offset 6, vector 0x00000052
Configure PCI(2:6:0): enable big endian operation

value = 1039171808 = 0x3df080e0

->

The actual output varies with build configuration and hardware. In this case, a PMC341bT is installed in PMC
site #1, and a FireTrac 3460bT in PMC site #2.

2.1.6. Upgrading Firmware

Firmware of the FireTrac card can be upgraded in the field using a special firmware upgrade utility,
fwupdater-firestackmill394.out. This is a kernel based application object module. It is important that
the firestackmil1394.out module is not loaded during a firmware upgrade. The firmware upgrade utility can
be loaded into the target system using the development tools on the host system or the kernel shell on the
target.

This is an example kernel shell session of a firmware upgrade. We're upgrading the second of two FireTrac
cards. The entry point is 'main’.

-> 1d < firestackmill394 2 1 10 ppc604 vxworks5.5/bin/fwupdater-firestackmill394.out

value = 1034304096 = 0x3da63a60

-> main

-- DapTechnology Firmware Programmer

-- Version firestackmill394-2.1.10-vxworks

—————————— Options --—---—-==--—---- MMM

[P] Print device list MM

[U] Update Firmware MMMMM, .MM MMMMMM .MM MMM .MMMMM~ .
[V] Verify Firmware .MMMMMMMMMMM MMMMMMMMMMM ~ MMMMMMMMMMM .
[T] Test All Available Firmware MMM . MMMM MMMM MMMM MMM. . MMM
[F] Flash License into Card MMM . MMM .
[S] Show Flash License in Card MMM . MMM MMMM MMM MMMM. .MMM.
[E] Erase Flash Data Section MMMMMMMMMMM NMMMMMMMMMM ~ MMMMMMMMMMM .
[?] This Menu . MMMMM MMM , MMMMM MMM MM.MMMMMM,
[X] Exit MM

MMM
[0-1] Select other card
Found 2 programmers

Current Device: 0

>1

>u

Checking firmware in flash...
Firmware in flash is different.
Starting update...

32

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

Softw are Overview

Erasing Flash...
FHEHEHE A AR R R R R R

Writing Firmware...
iddddsds st Raada iRttt Rttt Rt sttt st Rt EdEi

Checking firmware in flash...

Verifying Firmware...

ittt ddddidddddddtddddddsdatiddsidddiddiiR iR AR AR AR R
Firmware in Flash is updated

Please power cycle system for changes to take effect

>

The whole procedure should complete in a couple of minutes. You will have to power cycle the target system
before the new firmware takes effect, and the FireStack software will be able to use it.

2.1.7. License Management

A FireTrac card comes with a license certificate which enables features of the FireStack software. This
license certificate can be registered at run-time with fxAddLicenseCertificate, or permanently in flash memory
on the FireTrac card. Licenses installed in flash memory are automatically registered when a 1394 bus is
opened using fxCreateBusHandle.

The license certificate looks like this:

—--—- START OF LICENSE CERTIFICATE ---

kGuoVkY1lsFqgl3aoB
5JzabxdAGXIfhNnV
FUgafv70200xuBt3
hyoyiZvgM0OIhmzM8
8tAz6d6ENObs+DVi
SN1EXw==

-—-- END OF LICENSE CERTIFICATE ---

Normally, a FireTrac card is shipped with it's license certificate in flash. The firmware upgrade utility,
fwupdater-firestackmil1394.out, can be used to view or register this license certificate.

Assuming a FireTrac with no license certificate in flash memory, here's how to install it:

—————————— Options —---------———-
[P] Print device list

[U] Update Firmware

[V] Verify Firmware

[T] Test All Available Firmware
[F] Flash License into Card

[S] Show Flash License in Card
[E] Erase Flash Data Section

[?] This Menu

[X] Exit

[0-1] Select other card

>s

No license in flash

>f

—————————— Flash License ----------

With this feature it is possible to store a license key on the device

in internal flash memory. When FireStack is used to open a device

which contains a license key in flash memory, it will automatically use that,
eliminating the need to enter one manually.

A license key may be broken up into multiple lines of text input, an empty
line will finalize input.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 33

Softw are Overview

kGuoVkY1lsFgl3aoB5JzabxdAGXIfhNnVFUgafv70200xuBt3hyoyiZVgMO0IhmzM88tAz6d6ENObs+DViSNIEXw==

Written License..
>

Finally, type s to verify the license:

>3
License: 'kGuoVkYlsFgl3aoB5JzabxdAGXIfhNnVFUgafv70200xuBt3hyoyiZVgM0IhmzM88tAz6d6ENObs+DViSNIEXw=="
—————————— License Information ----------
Modules:
Low-Level API
Mi11394 Transmission

Operating Systems:
VxWorks 5.5
VxWorks 6.2

VersionMajor: 1

34 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

Definition of Terms

Chapter 3. Definition of Terms

Bus A device can contain several PHYs, each one representing a node on a 1394 network. Each

PHY of a device is referred to as a bus, even though multiple PHY's could be connected to the
same 1394 network.

Node Each PHY connected to a 1394 network is referred to as a node on the network.
Network One or more interconnected 1394 PHY's form a 1394 network.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 35

Document Conventions

Chapter 4. Document Conventions

Each function description has its own numbered section. A function description can contain one or more of
the following items:

Description
This item provides a general description of what the function does. In some cases when the use of a function
is not trivial, an example is provided for a C-code development environment.

Parameters
This item contains a table with function parameter descriptions.

Return Codes
This item describes possible return values of the function.

Synopsis
This item contains the function prototype in C-style as it can be found in the API header file.

36 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

Parameter Naming Conventions

Chapter 5. Parameter Naming Conventions

The size of a function input data pointer is always called 'size' and placed after the data pointer in the function
parameter list as an uint32_t:

void myFunc(const uint32 t* data, uint32 t size)

Size is always expressed in the number of items of the data pointer type, so in most of the cases the number
of uint32_t values.

The size of allocated memory of a function output parameter pointer is always called maxSize and placed

after the data pointer in the function parameter list as an uint32_t:
void myFunc (uint32 t* buffer, uint32 t maxSize)

maxSize is always expressed in the number of items of the data pointer type, so in most of the cases the
number of uint32_t values.

A function input data pointer that is not of a struct type is called "data":
const uint32 t* data

A function output data pointer which is not of a struct type is called "buffer":
uint32 t* buffer

Bitmasks are always unsigned and their name indicates it is a bit mask:
uint32 t nodeMask

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 37

API Revision History

Chapter 6. APl Revision History

This section contains an oveniew of changes to the API. This section does not reflect other changes like
performance improvements and/or new functionality implemented without changing the API.

38 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

API Revision History

6.1. Changes in 2.1.x series
Release 2.1.3

General

¢ New macros have been defined for additional frame sync modes for the FireTrac4x24bT card:
o FX MIL SYNC SIGNAL D
o FX MIL SYNC BUS 3
o FX MIL SYNC OUT SIGNAL D

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 39

API Revision History

6.2. Changes in 2.0.x series
Release 2.0.6

AS5643 Transmission Related
¢ New option for Repeating mode context: FX MIL_ TRM_CONTEXT OPT FRAME_SKIP_COUNT

Release 2.0.3

¢ New settings for resource usage of Asynchronous modules
o FX_SETTING_ID_ASYNC_MAX TRM_QUEUE_LENGTH
o FX_SETTING_ID_ASYNC_NUM_RCV_BUFFERS

¢ New settings for resource usage of AS5643 modules
o FX_SETTING_ID_MIL_RCV_MAX BUFFERS
o FX_ SETTING_ID_MIL_TRM_MAX BUFFERS

Release 2.0.1

General
e Structure FXBuslnfoStruct has been extended with a deviceType field

AS5643 Related

¢ New Input Modes for Frame Synchronization FX MIL_SYNC_SIGNAL_A to FX MIL_SYNC_SIGNAL_C and
FX MIL_SYNC BUS 0to FX MIL_SYNC BUS 2

* New Output Modes for Frame Synchronization FX_MIL_SYNC_OUT_SIGNAL_A to
FX MIL_SYNC _OUT SIGNAL C

¢ New function xMilTrmCreateContextHandleExt

¢ New structure FXMilTrmContextOption

e New context options FX MIL_ TRM_CONTEXT OPT MODE,
FX MIL_ TRM_CONTEXT OPT JITTER RANGE and FX MIL_ TRM CONTEXT OPT JITTER DIRECTION

¢ New message option FX MIL_ TRM_OPT JITTER _MODE

Release 2.0.0

General
e New macros FX SPEED _TYPE_AUTO and FX SPEED_TYPE_FIXED
e New macros FX SPEED MASK and FX SPEED_TYPE_MASK

Asynchronous Transactions
e Structure FXTransactionOptions has been extended with a speedMode field. Setting this to zero reverts to
previous behavior.

Low Level

¢ New fxIssueBusReset function

¢ New fxPhySetForceRoot function
¢ New fxPhySetGapCount function

40 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

API Revision History

6.3. Changes in 1.0.x and 0.98.x series

General

fxGetEUI64() moved out of Low-Level module into Bus Initialization section

FX EVENT_ISOTRM_BUFFER macro remowved

New macros FX EVENT_ISOTRM_CONTEXT and FX_ EVENT_ISOTRM_PACKET

New macros FX ERR_MODULE_NOT_AVAILABLE and FX ERR_MODULE_NOT_LICENSED
New Setting type FX SETTING_ID_ DEMO_MODE

Low-Level Module
¢ New function fxPingRemoteNode()

Serial Bus Management

e FX GENERAL_FEATURE_CONNECTION_MANAGEMENT macro removed as it is not used
e FX SBM_BUS_MANAGER_CAPABLE macro remowved as it is not used

¢ New function fxGetMaxSpeedToNode()

Outbound Transactions
¢ New macro FX OBD_TRANSACTION_ MAXREACHED
¢ New macro FX ERR_OBD_TRN_MAXIMUM_REACHED

Isochronous Transmission
¢ All definitions in this module are new

Mil1394 Transmission

e FXMilTrmCallback has a new parameter eventCodes

¢ The optionList and optionSize parameters have been removed from fxMilTrmStrmWritelmmediate. The
options were ignored in the previous releases, and each packet in data must contain the offset and the
speed option (see Data Formats).

¢ The macro FX MIL_CTRLFLAG_SKIPAFTERFRAMEEND is no longer supported.

¢ New function £xMilTrmSetMessageOptions ()

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 41

General Structures and Definitions

Chapter 7. General Structures and Definitions

7.1. Type Definitions
7.1.1. Basic Types

The following basic types are defined to ensure that each user-defined variable will have the right number of
bits when used as parameter for a function call.

int32 t 32 bits signed integer

uint32 t 32 bits unsigned integer

float32 t |32 bits single precision floating-point

float64 t |64 bits double precision floating-point

7.1.2. Special Types

FXReturnCode Data type for holding error codes as returned by all
functions. A human readable error message can be found
for each error code with the function
fxGetErrorMessage.

FXBusHandle Handle to a bus opened by the fxCreateBusHandle
function.

42 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

General Structures and Definitions

7.2. Structure Definitions
7.2.1. FXInt64

Description
This structure can be used to hold a 64 bit signed integer value.

Synopsis
typedef struct {
uint32 t highWord;
uint32 t lowWord;
} FXInt64;

7.2.2. FXUint64

Description
This structure can be used to hold a 64 bit unsigned integer value.

Synopsis

typedef struct {
uint32 t highWord;
uint32 t lowWord;

} FXUint64;

7.2.3. FXAddress64

Description
This structure can be used to hold a 1394 memory address.

Synopsis

typedef struct {
uint32 t highAddress;
uint32 t lowAddress;

}FXAddresso64;

7.2.4. FXChannelMask

Description
This structure can be used to hold a 64 bit channel mask value.

Members
channelHi bit31: Channel 63 bit0: Channel 32
channellLo bit31: Channel 31 bit0: Channel 0
Synopsis
typedef struct {

uint32 t channelHi;

uint32 t channello;

}FXChannelMask;

7.2.5. FXSetting

Description

This structure can be used to hold a setting. An array of FXSetting can be specified when creating a handle to
a device. Available settings depend on several aspects like which FireStack modules are included, operating
system and link layer type. Each component that has settings will document available settings in the manual

section of that component.

Members

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

43

General Structures and Definitions

settingld Setting ID
value Setting value.
Synopsis
typedef struct {
uint32 t settinglId;
int32 t value;
}FXSetting;

44

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

General Structures and Definitions

7.3. Constants
7.3.1. Speed Codes

The definitions below may be used for specifying packet transmission speed.

FX SPEED_100 100 Mbps
FX SPEED_200 200 Mbps
FX SPEED 400 400 Mbps
FX SPEED 800 800 Mbps
FX SPEED 1600 1600 Mbps
FX SPEED 3200 3200 Mbps

7.3.2. Transaction Types

The definitions below may be used for specifying transaction access types. The definitions can be logically
ORed if necessary.

FX TRANSACTION_READ ACCESS Read access
FX TRANSACTION_WRITE_ACCESS Write access
FX TRANSACTION LOCK ACCESS Lock access

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 45

Administrative Functions

Chapter 8. Administrative Functions

This section describes all administrative functions. Administrative functions can be used to open and close a
device and get handles to the busses it is connected to. This section also contains descriptions of functions
for retrieving information about a device or other piece of common API information.

46 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

Administrative Functions

8.1. Initialization

Before the user application calls any of the FireStack functions, the FireStack itself needs to be initialized
with the function fxlInitialize(). After the user closes the last device and just before the user-application exits,
the FireStack needs to be terminated by making a function call to fxTerminate().

8.1.1. Functions
8.1.1.1. fxinitialize

Description

This function needs to be called before any other functions are called and should only be called once per
running application. This function sets up FireStack internal data structures and builds the list of supported
devices. If this function is not called, the FireStack will simply not find any supported 1394 busses.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

Synopsis
FXReturnCode fxInitialize (
void

)

8.1.1.2. fxTerminate

Description
This function needs to be called right before the user-application exits and after the last FireStack handle has
been closed.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

Synopsis
FXReturnCode fxTerminate ()

8.1.1.3. fxAddLicenseCertificate

Description

This function can be used to register license certificates by means of a zero terminated string. This must be
done each session, otherwise the library enters a demo mode where everything is enabled for only a small
amount of time (if this mode is available in your FireStack profile). This function must be called after
fxInitialize and before fxCreateBusHandle, otherwise the license will be ignored.

Please note that a license with an expiration date will automatically expire at midnight after that day, and
terminate the FireStack. Any memory resources allocated with the FireStack should then not be used
anymore. In case you register multiple license certificates for a device, their components will be combined.
They will expire on the earliest expiration date (if any). If one of the licenses is invalid, fxCreateBusHandle will
fail when trying to create a handle for the respective device(s).

Parameters

certificate A zero-terminated string containing the license certificate.
Space, tab and new-line characters will be ignored.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function xGetErrorMessage to lookup descriptions corresponding to negative return values.

Synopsis

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 47

Administrative Functions

FXReturnCode fxAddLicenseCertificate(
const char* certificate

48 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

Administrative Functions

8.2. Bus Initialization

Each device contains one or more 1394 PHY chips, referred to as busses in this document. Most of the
functions work on a single PHY and need a bus handle as input to choose which 1394 bus to control.

The functions in this section can be used to acquire and release handles to the busses of a device.

8.2.1. Functions
8.2.1.1. ixGetNumberOfBuses

Description
This function will query for supported 1394 devices and build a list of FXBuslInfo structures. A copy of the list
can be retrieved by the user by calling xGetBusInfolList.

Parameters

numBuses Returns the number of supported 1394 busses found

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

Synopsis
FXReturnCode fxGetNumberOfBuses (
uint32 t* numBuses

)

8.2.1.2. fxGetBusinfolList

Description
This function may be called after calling to fxGetNumberOfBuses to get an array of FXBusinfo structures. The
user needs to take care of allocating an array and specifying its size when calling this function.

Parameters

list User-allocated bus information list. The stack will copy its
internal list into this one.

maxSize The number of FXBusInfo structs that fit in the list

size The actual number of FXBusInfo structs returned

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function xGetErrorMessage to lookup descriptions corresponding to negative return values.

Synopsis

FXReturnCode fxGetBusInfolist (
FXBusInfo* 1list,
uint32 t maxSize,
uint32 tx* size

)

8.2.1.3. fxCreateBusHandle

Description

This function creates and allocates a handle to the specified 1394 bus. The user has the option to either
manually create an FXBuslnfo structure with valid information or to use one of the FXBuslnfo structs returned
by fxGetBusInfoList.

When opening a handle the user may choose to specify a list of settings by providing the function with an
array of FXSetting structures. Available settings depend on various aspects like operating system used,

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 49

Administrative Functions

FireStack modules included in this specific FireStack release and higher-level protocols included in this
specific FireStack release. Whenever a module offers user-configurable settings it will include them in the
module's documentation.

In addition to the per module settings, the following general settings are available:
e Setting for enabling/disabling features

e Setting for starting in Demo Mode

e Setting to force the byte order of 1394 packet data

Parameters

info User-specified FXBusInfo struct that corresponds to the 1394
bus to open.

settingList An array of struct type FXSetting that allows providing
settings when creating a handle or one can set this parameter
to zero to leave out settings.

size The number of settings in the provided settinglList array.

busHandle If successful, returns a handle to the opened bus.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_DEVICE_INIT_FAIL
FX_ERR_MEM_ALLOC_FAIL
FX_ERR_INVALID_PCI_REVISIONID
FX_ERR_NEEDS_FWUPDATE
FX_ERR_MODULE_NOT_AVAILABLE
FX_ERR_MODULE_NOT_LICENSED
FX_ERR_INVALID_PCI_SPEED

Synopsis

FXReturnCode fxCreateBusHandle (
const FXBusInfo* info,
FXSetting* settinglist,
size t size,
FXBusHandle* busHandle

)

8.2.1.4. fxCloseBusHandle

Description
This function frees resources used by the specified bus handle.

Parameters

busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_DEVICE_CLOSE_FAIL

Synopsis
FXReturnCode fxCloseBusHandle (

50 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

Administrative Functions

FXBusHandle busHandle

8.2.1.5. ixGetEUI64

Description
This function can be used to obtain a 64-bit extended unique identifier stored in the hardware.

Parameters

handle Reference handle to the bus to control.
(see fxCreateBusHandle)

EUIG4 Pointer to FXUint64 structure to which the EUI-64 data is
returned.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE

Synopsis

FXReturnCode fxGetEUI6GA4 (
FXBusHandle handle,
FXUintoe4d~* EUIG4

)

8.2.2. Structures
8.2.2.1. FXBusinfo

Description

This structure defines data members that together provide sufficient information to identify a device. When
used in combination with fxCreateBusHandle sufficient information needs to be filled in to identify the device
to be opened, all other fields may be set to -1.

For example if a user just wants to open the first 1394 bus device found in the system it is sufficient to set
deviceld to 0 and the remaining fields to -1 when calling fxCreateBusHandle.

When a user wants to open a specific PCI physical location all PCI fields should be filled in correctly and all
other fields need to be set to -1 when calling ixCreateBusHandle.

Simplest way to use this structure to open a device is to let the FireStack fill in the fields. This can be done
by using the function fxGetBuslnfoList.

Members

deviceld Device identification number. Unique for each 1394 bus device
connected to the system. This number is not related to physical
configuration but picked by software.

pciBus PCI bus number for PCI devices, -1 otherwise. Indicates the PCI
bus number the 1394 bus device is connected to. Numbering is
defined by the physical PCI bus topology.

pciDevice PCI device number for PCI devices, -1 otherwise. Numbering is
defined by the physical PCI bus topology.

pciFunction PCI function for PCI devices, -1 otherwise.
In case of a multi-function PCI device, this field holds the
function index of the time input module.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 51

Administrative Functions

pciRevision PCI Revision for PCI devices, -1 otherwise.
In case of FireTrac devices this represents the firmware
version.

deviceType The type of hardware device this bus is part of. Actual
definitions can be found above this structure in firestack.h
header file. They are in FX DEVICE TYPE format.

Synopsis
typedef struct {
/* Identification */
int32 t deviceld;

/* PCI Physical location */

int32 t pciBus;
int32 t pciDevice;
int32 t pciFunction;

/* Information */
int32 t pciRevision;

/* Device Type */
int32 t deviceType;
} FXBusInfo;

8.2.3. Settings
8.2.3.1. Features

The following setting can be used as settingld in an FXSetting structure passed to fxCreateBusHandle() to
control which features will be enabled for the bus that is being opened. By default all modules are enabled for
which a valid license key is present.

FX_SETTING_ID_ GEN_FEATURES

The following settings can be or-ed together to form the FXSetting value field:

FX GENERAL_FEATURE_CONFIG_ROM

This feature will setup a configuration ROM for the local node and expose that onto the 1394 bus. If this
feature is enabled other nodes on the bus can read the configuration ROM of the local node by means of
Asynchronous Read Requests or Asynchronous Block Read Requests.

FX_GENERAL_FEATURE_INBOUND_TRANSACTIONS
Set this bit to enable the Inbound Transactions Module. Please be aware that a valid license is needed for
this module.

FX_GENERAL_ FEATURE_ OUTBOUND_ TRANSACTIONS
Set this bit to enable the Outbound Transactions Module. Please be aware that a valid license is needed for
this module.

FX_GENERAL FEATURE_ISO_RECEIVE
Set this bit to enable the Isochronous Reception Module. Please be aware that a valid license is needed for
this module.

FX_GENERAL_FEATURE_FIRESTACK MIL1394_RECEIVE
Set this bit to enable the Mil1394 Reception Module. Please be aware that a valid license is needed for this
module.

FX_GENERAL_FEATURE_FIRESTACK_MIL1394_ TRANSMIT
Set this bit to enable the Mil1394 Transmission Module. Please be aware that a valid license is needed for

52

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

Administrative Functions

this module.

FX_GENERAL_FEATURE_LOWLEVEL
Set this bit to enable the Low Level Module. Please be aware that a valid license is needed for this module.

FX_GENERAL_FEATURE_ BUS_MANAGEMENT
Set this bit to enable the Serial Bus Management Module. Please be aware that a valid license is needed for
this module.

The following features are currently reserved:
* FX_GENERAL FEATURE ISO_TRANSMIT
* FX_GENERAL FEATURE_CONNECTION_ MANAGEMENT

8.2.3.2. Demo Mode
The following setting can be used as settingld in an FXSetting structure passed to fxCreateBusHandle().

FX_SETTING_ID_DEMO_MODE
Set the value to 1 to start in demo mode with all features enabled. This mode expires after 5 minutes. Set the
value to 0 to start in normal mode. Please note that for this mode a valid license certificate is required.

8.2.3.3. Stack Size
This ID can be used as a setting in an FXSetting structure passed to fxCreateBusHandle():

FX_SETTING_ID_ STACKSIZE

Several functions, such as fxMilSetStofCallback(), xMilRcvSetContextOptions(), allow the user to register
one or more callback functions. These callbacks execute within the context of the User Event Callback
thread, one of several threads spawned for each bus opened with fxCreateBusHandle().

The rx_seTTING 1D _sTacksIzE Setting allows the use to increase the default stack size of the User Event
Callback thread. The argument specifies the stack size in bytes, and must be a decimal value larger than
8192.

This setting is specific to the wxWorks version of the FireStack software.

8.2.3.4. Thread Priorities
This ID can be used as a setting in an FXSetting structure passed to fxCreateBusHandle():

FX_SETTING_ID_THRPRIO_BASE

The firestackmil1394 software spawns several threads when a device is opened with fxCreateBusHandle(): an
interrupt senvicing thread, an internal event handling thread, and a thread from which user callbacks are
executed. These threads have carefully chosen priorities: the interrupt handling threads have the highest
priority, followed by the event handling and user event callback threads. The interrupt thread of the first
FireLink device has the highest priority level (20). This results in the following threads and priorities, with the
mil1394datalogger example running from the target shell:

-> i

NAME ENTRY TID PRI STATUS PC SP ERRNO DELAY
tExcTask excTask 3dffe3cO 0 PEND 1b3190 3dffe2al 0 0
tLogTask logTask 3dffb820 0 PEND 13190 3dffb710 0 0
tShell shell 3df816a0 1 DELAY laeb40 3df813cO 0 1
tWdbTask wdbTask 3df83940 3 READY la9fbc 3d£f83810 0 0
fst_isr0 0x3def5228 3df7b2e0 20 PEND la9fbc 3df7b210 0 0
fst isrl 0x3def5228 3deaaed40 21 PEND la9fbc 3deaad?70 0 0
fst_isr2 0x3def5228 3cf54810 22 PEND la9fbc 3cf54740 0 0
fst _iev0 0x3def5620 3df61930 25 PEND la9fbc 3df61830 0 0
fst_ievl 0x3def5620 3d6e3c50 26 PEND la9fbc 3d6e3b50 0 0
fst iev2 0x3def5620 3c£52590 27 PEND la9fbc 3cf52490 0 0
fst_uevO O0x3def594c 3df5£710 30 PEND la9fbc 3df5f620 0 0

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 53

Administrative Functions

fst uevl 0x3def594c 3d6ela30 31 PEND la9fbc 3d6el940 0 0
fst_uev2 0x3def594c 3c£50290 32 PEND la9fbc 3cf501a0 0 0
tNetTask netTask 3dfbd630 50 READY 1a9e08 3dfbd3f0 0 0
tPhyTask 0x118f10 3dfba090 150 PEND la9fbc 3dfb9fcO 0 0
value = 0 = 0x0

The value passed with the Fx_SETTING_ID_THRPRIO_BASE option, when used with fxCreateBusHandle(), will
be the priority of the interrupt senicing thread of the device being opened. The priorities of the internal event
handling threads are derived from the priority of the interrupt senicing thread using the algorithm described
above. When using the option FX_SETTING_ID_THRPRIO_BASE, it is recommended to assign a unique,
sequential priority level to every device being opened.

This setting is specific to the vxWorks version of the firestackmil1394 software.

8.2.3.5. Byte Order
This ID can be used as a setting in an FXSetting structure passed to fxCreateBusHandle():

FX_SETTING_ID BYTE ORDER
This setting is used to control byte swapping during host bus accesses on the data portion of a 1394 packet.
Byte swapping, if necessary, is performed by the host adapter to awid CPU overhead. These values are
possible:

FX_BYTE_ORDER_HOST_NATIVE
The default action when this setting is not applied. 1394 packet data is in host-native byte order.

FX_BYTE_ORDER_BIG_ENDIAN
Enforce big endian packet data byte order, even on little endian systems.

FX_BYTE ORDER_LITTLE_ENDIAN
Enforce big endian packet data byte order, even on little endian systems.

54 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

Administrative Functions

8.3. Memory Management

When the user sets up buffers and hands the memory pointer to the FireStack for any kind of DMA operation
like packet reception, the user needs to use the following functions to allocate and free the memory buffers.

8.3.1. Functions
8.3.1.1. ixMemAlloc

Description

This function can be used to allocate memory that can later by handed to the FireStack for DMA operations.
Each function that offers a zero-copy interface to the Link Layer makes use of DMA and can only use
memory allocated by this function. Any function that hands a reception buffer to the FireStack for example
needs to use this function to allocate the memory buffer. Best practice is to allocate all needed buffers when
the user-application starts and free allocated memory right before the application exits. Especially in real-time
environments it is better not to allocate and free a lot during program execution.

Parameters

busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)

ptr If allocation is successful this parameter will contain the
pointer. Zero otherwise.

size The requested buffer size in bytes

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_PARAMETER
FX_ERR_INVALID_HANDLE
FX_ERR_MEM_ALLOC_FAIL

Synopsis

FXReturnCode fxMemAlloc (
FXBusHandle busHandle,
void** ptr,
uint32 t size

)

8.3.1.2. ixMemFree

Description
This function needs to be used to free memory allocated by fxMemAlloc.

Parameters

busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)

ptr Memory pointer of the buffer to release.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_PARAMETER
FX_ERR_INVALID_HANDLE

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 55

Administrative Functions

Synopsis

FXReturnCode fxMemFree (
FXBusHandle busHandle,
void* ptr

56

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

Administrative Functions

8.4. General

8.4.1. Functions

8.4.1.1. fxGetLibraryVersion
Description
This function returns the version information of the library.

Parameters

version Returns the version information structure for the API 1lib in

use.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function xGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_PARAMETER

Synopsis
FXReturnCode fxGetLibraryVersion (
FXVersionInfo* version

)

8.4.2. Structures
8.4.2.1. FXVersioninfo

Description
This structure holds the three sub version numbers that all together form the complete software version. This
structure does not indicate whether it concerns a beta or alpha version.

Members
majorVersion The major version number.
minorVersion The minor version number.
patchVersion The patch version number.
Synopsis
typedef struct {

uint32 t majorVersion;

uint32 t minorVersion;

uint32 t patchVersion;

} FXVersionInfo;

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 57

Administrative Functions

8.5. Error Handling

Most functions return a negative return value (FXReturnCode) in case an error occurred. These error

conditions can be tracked by the user in three ways:

¢ By inspecting the return value of each function call

¢ By registering a single error callback function (fxSetErrorCallback) that will be called every time an error
occurs.

¢ By checking the current error state after a couple of function calls by using the function fxGetErrorStatus.

To translate an error code into a human readable text, please use the function fxGetErrorMessage.

8.5.1. Functions

8.5.1.1. fxGetErrorMessage

Description
This function can be used to lookup the message text corresponding to the specified error code.

Parameters

error The error code to lookup.

buffer The error text will be written to this memory pointer,
including a terminating zero.

maxSize The maximum size of the data that will be written, including
the terminating zero.

Return Codes

On success, this function returns the length of the actual message (including the terminating zero), which
may be more than what could be placed in the buffer. To get the full message, you should pass a buffer of at
least that size to this function. A negative return value indicates an error.

FX_ERR_INVALID_PARAMETER

Synopsis

FXReturnCode fxGetErrorMessage (
FXReturnCode error,
char* buffer,
uint32 t maxSize

)

8.5.1.2. fxSetErrorCallback

Description
This function can be used to register a single callback function that will be called every time a function is
about to return an error code.

Parameters

callback The user-defined function that will be called when a function
returns an error. There is only one function that can be
registered: Calling this function with another callback
function will replace the current one, and with 0 will disable
the callback.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

Synopsis
FXReturnCode fxSetErrorCallback(

58

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

Administrative Functions

FXErrorCallback callback

)

8.5.1.3. fxGetErrorStatus

Description

If an API function returns an error, the error code is stored as the current error status. If the current error
status already contains an error then it will not be overwritten. Therefore the error status will always reflect the

first error that was encountered.

Every time this function is called, the error status is cleared and the first error after clearing it will again be

remembered.

Current error status is not used by the APl itself and does not have to be cleared by the user. It is just a
convenience function to determine what was the first error after it was cleared the last time.

Return Codes

Please use the function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

Synopsis
FXReturnCode fxGetErrorStatus/()

8.5.2. Constants
8.5.2.1. Error Codes

The following values may be returned by functions.

FX ERR_GENERAL

FX ERR_INTERNAL_ERROR

FX ERR_NOT_IMPLEMENTED
FX ERR_INVALID_HANDLE
FX_ERR_DEVICE_INIT_FAIL

FX ERR_DEVICE_CLOSE_FAIL
FX ERR_MEM_ALLOC_FAIL

FX ERR_INVALID_PARAMETER
FX ERR_INVALID_LOCAL_NODE_ID
FX ERR_NEEDS_FWUPDATE
FX ERR_INVALID_PC|_SPEED

FX ERR_LICENSE_FIRESTACK_VERSION
FX ERR_LICENSE_NOT_FOUND

FX ERR_LICENSE_EXPIRED

FX ERR_LICENSE_DEVICE

FX ERR_LICENSE_OPERATING_SYSTEM
FX ERR_LICENSE_CORRUPT

FX ERR_LICENSE_MODULE

FX ERR_LICENSE_SYSTEMDATE

8.5.3. Type Definitions
8.5.3.1. FXErrorCallback

Description

Users can define a function of this type and register it using the function &xSetErrorCallback. The user defined

function will then be called each time a function is about to return a negative error code.

Parameters

errorCode Contains the error code that is returned by a function that
caused an error.

Synopsis

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

59

Administrative Functions

typedef void (*FXErrorCallback) {
FXReturnCode errorCode

)7

60 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

AS5643 Protocol APl Reference

Chapter 9. AS5643 Protocol APl Reference

The SAE-AS5643 protocol differs from other 1394 Protocols because of its timing requirements. 1394b
supports asynchronous transactions/streams and isochronous streams. Isochronous streams offer (in a way)
something close to timed transmission because of its timed cycles, howewver this would just offer a 125us
resolution which is not accurate enough for the AS5643 frame timing. Therefore, if a standard 1394b Link
Layer were to be used for the AS5643 protocol, Asynchronous Streams need to be used in combination with
some kind of software-implemented AS5643 protocol timing.

Although AS5643 protocol timing could be implemented in software, it would be complicated to absolutely
guarantee the required accuracy. At DapTechnology we strongly believe that the AS5643 protocol timing
should be considered an extension to the 1394b required functionality of a Link Layer and we therefore have
been using our own Analyzer Engine for years in the FireSpy series. We hawe also implemented the AS5643
protocol timing in our FireLink Extended as an add-on module. DapTechnology's FireLink Extended is easily
capable of meeting the AS5643 frame timing requirements and eliminates the need for complicated interrupt
schemes or real-time operating systems to use the AS5643 protocol.

The FireStack software library contains an AS5643 protocol module that can be used to control the AS5643
hardware of either a custom FireLink Extended enabled product or DapTechnology's FireTrac I/O card. This
section describes how frame timing can be configured and used for both timed transmission and reception.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 61

AS5643 Protocol APl Reference

9.1. AS5643 Frame Timing

The AS5643 protocol introduces the concept of time frames separated by a Start Of Frame packet
transmitted onto the bus by a control computer. Each node is supposed to listen to those STOF messages
and transmit and receive their own messages only at a predefined time offset relative to the STOF.

FireStack is very flexible in the way it handles the timing of Start of Frames. Frame synchronization for
AS5643 reception and transmission may be configured in either one of the following modes:

¢ Free Running or internal clock (based on a 1 micro second input signal)

e STOF packets on the bus (just any packet on a configurable channel)

e External Sync Input Signals A, B or C

¢ Internally synchronized to one of the other two FireTrac buses

Please refer to Frame Synchronization Input Modes for more information.

When frame timing is configured to synchronize (not FreeRunning) then synchronization works as follows

depending on the moment in time when the synchronization signal arrives.

¢ When the synchronization signal arrives within the synchronization margin then the frame counter is
incremented and the frame offset clock is reset to zero. Obviously the next expected sync pulse is exactly
the frame length after this moment.

¢ When the synchronization signal arrives outside the synchronization margin, then the frame counter is not
incremented but the frame clock is reset to zero basically making it a very long frame. Obviously the next
expected synchronization pulse is exactly the frame length after this moment.

¢ When the synchronization signal does not arrive before the end of the synchronization margin or exactly
when the sync margin expires, the frame counter will be incremented and the frame offset clock will be set
equal to the synchronization margin.In effect this deals with a missed synchronization signal and uses
internal clock to continue operation until the sync signal becomes available again.

Regardless of synchronization mode, the user always needs to specify the frame length being used. If
synchronization mode is set to external signal or packet on the bus then a synchronization margin also
needs to be specified that determines when the hardware is sensitive to the input signal. This value should be
in accordance with the STOF packet accuracy.

On FireTrac V3 and later devices, FireStack is also able to configure one or more of the external sync pins
(A, B and/or C) as sync output rather than input. Please refer to Frame Synchronization Output Modes for
more information.

9.1.1. Functions

9.1.1.1. IxMilSetFrameTimingOptions

Description
This function can be used to configure the way a bus will handle its frame timing. For more information please
see FXMilFrameTimingOptions.

Parameters

busHandle Reference handle to the bus to control.
(see xCreateBusHandle)

options Pointer to user-allocated structure that contains the options to set for frame
synchronization
(see EXMilFrameTimingOptions)

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER

62

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

AS5643 Protocol APl Reference

FX_ERR_MIL_INVALID_FRAME_SYNC_MODE
FX_ERR_MIL_INVALID_FRAME_SYNC_OUT_MODE
FX_ERR_MIL_INVALID_FRAME_LENGTH
FX_ERR_MIL_INVALID_FRAME_SYNC_MARGIN
FX_ERR_MIL_INVALID_FRAME_SYNC_CHANNEL
FX_ERR_MIL_INVALID_DMA_PRELOAD_TIME

Synopsis
FXReturnCode fxMilSetFrameTimingOptions (
FXBusHandle busHandle,

const FXMilFrameTimingOptions* options

)

9.1.1.2. fixMilSetStofCallback

Description

The user can choose to be notified whenever a Start Of Frame (STOF) occurs. This can be done by
registering a user-defined callback function. The callback function could for example read current frame
number and STOF timestamp for correlating packets to frames by means of timestamps.

This function can be used to register a callback function that will be called when the FireStack detects the
start of frame. Specifying 0 (zero) as a pointer of the function will disable calling the function.

Parameters

busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)

callback Callback function. (see FXMilStofCallback)

userData Pointer to a user-specified data. The pointer will be carried
to user callback functions. See also FXMilStofCallback.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE

Synopsis

FXReturnCode fxMilSetStofCallback (
FXBusHandle busHandle,
FXMilStofCallback callback,
void* userData

)

9.1.1.3. IxMilGetFrameOffsetTime

Description
This function can be used to retrieve the current frame number and the current time offset within the frame.

Parameters

busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)

frameNumber Pointer to user-allocated variable that will return the current
frame number.

frameOffset Pointer to user-allocated variable that will return the current
time offset in micro seconds relative to start of frame.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 63

AS5643 Protocol APl Reference

function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE

Synopsis

FXReturnCode fxMilGetFrameOffsetTime (
FXBusHandle busHandle,
uint32 t* frameNumber,
uint32 t* frameOffset

)

9.1.1.4. ixMilGetStofTimestamp
Description

Read information for the last STOF. Returns timestamp and Frame number.

Parameters

busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)

frameNumber Pointer to frame number.

timeStamp Pointer to FXTimeStamp.

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER

Synopsis

FXReturnCode fxMilGetStofTimestamp (
FXBusHandle busHandle,
uint32 t* frameNumber,
FXTimeStamp* timeStamp

)

9.1.2. Type Definitions
9.1.2.1. FXMilStofCallback

Description

This function definition is used to specify a callback function that will be called when the FireStack detects
the start of frame.

Parameters
handle Reference handle to the bus to control.
(see fxCreateBusHandle)

userData Pointer to the data specified in fxMilSetStofCallback.
Synopsis
typedef void (*FXMilStofCallback) {

FXBusHandle handle,

void* userData

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

AS5643 Protocol APl Reference

9.1.3. Structures

9.1.3.1. FXMilFrameTimingOptions

Description

This structure holds options for frame time synchronization and can be used with the function
xMilSetFrameTimingOptions to setup synchronization.

Members

syncMode

One of the modes documented in Frame Synchronization Input Modes or-ed with one of
the modes documented in Frame Synchronization Output Modes.

default: (FX MIL SYNC FREERUNNING | FX MIL SYNC OUT NONE)

frameLength

The duration of a frame expressed in micro seconds.
A negative value means that the frame length will not be changed.

minimum: 3000, maximum: 30000, default: 12500

syncMargin

In case the syncMode is not set to FX MIL_SYNC FREERUNNING this value defines
the margin in micro seconds before and after the frame length during which a
synchronization event will result in incrementing the frame counter.

When a synchronization event is detected before the frame offset time reaches
framelLength-syncMargin, the synchronization event will result in clearing the frame
offset time, but no new frame is started (frame counter is not incremented).

When no synchronization events are detected and the frame offset reaches a value of
framelLength+syncMargin, a new frame is automatically started (frame counter
incremented) and the frame offset time is set to the value of the syncMargin (as ifa
sync was detected at the the time frameOffset was equal to the framelLength).

A negative value means that the synchronization margin will not be changed.

minimum: 10, maximum 3000, default: 100

channel

When syncMode is set to FX MIL_ SYNC PACKET this value specifies the 1394
channel number to listen on for synchronization packets. Any received stream packet
with the channel number specified here will result in the start of a next frame.

A negative value means that the synchronization channel will not be changed.

minimum: 0, maximum: 63, default: 31

controlFlags

Combination of one or more of the flags documented in Frame Control Flags.

dmaPreloadTime

This value is only intended for advanced users. It can be used to control the DMA
preload time for packets to be transmitted at a specific frame offset time.

Whenever a packet needs to be transmitted onto the bus it first will be copied from host
memory to the transmission FiFo using the DMA controller. To ensure a packet is
actually transmitted at exactly the moment in time it was scheduled at least the first
part of the packet needs to be already in the FiFo. When copying a packet to the FiFo
a large amount of time before it needs to be transmitted it is not possible anymore to
insert packets in the FiFo that need to be transmitted before that packet. Therefore,
this value needs to be chosen in such a way that it will be preloaded just in time to be
transmitted on time and therefore still offering a lot of flexibility to edit the transmission
queue for the current frame.

You should set this time to a value equal to or greater than the time that the whole
system needs to load the packet. If you set it too small, the packet may be transmitted

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 65

AS5643 Protocol APl Reference

on a time later than specified by the frame offset time for that packet. Most systems
will have a DMA latency of at most a few micro seconds in normal situations. To allow
for special cases (higher priority DMA transfers for instance) it is safe to set this value
to a few milli seconds. If you however want to do some real time processing and you
want to be able to change some values of the packet data just before it is transmitted,
you could set this value as low as possible.

A negative value means that the DMA pre-load time will not be changed.

minimum: 10, maximum: 3000, default: 1000

Synopsis

typedef struct {
uint32 t syncMode;
int32 t frameLength;
int32 t syncMargin;
int32 t channel;
uint32 t controlFlags;
int32 t dmaPreloadTime;

} FXMilFrameTimingOptions;

9.1.3.2. FXTimeStamp

Description
This structure can be used to hold a timestamp value and corresponding time source status.

Members
seconds Time stamp seconds value
subSeconds Time stamp sub-seconds value. (resolution defined by FXTimelnputinfo structure)
statusCode Time stamp status code:
0 = Invalid
1 = Free Running
2 = Synced (time output is synced to the IRIG input and becoming more accurate
over time)
3 = Accurate (time output is synced to the IRIG input with maximum accuracy)
Synopsis
typedef struct {
uint32 t seconds;
uint32 t subSeconds;
uint32 t statusCode;

} FXTimeStamp;

9.1.4. Constants
9.1.4.1. Error Codes

The following values may be returned by AS5643 Frame Timing functions.

FX ERR_MIL_INVALID_FRAME_SYNC_MODE
FX ERR_MIL_INVALID_FRAME_LENGTH

FX ERR_MIL_INVALID_FRAME_SYNC_MARGIN
FX ERR_MIL_INVALID_FRAME_SYNC_CHANNEL
FX ERR_MIL_INVALID_DMA_PRELOAD_TIME
FX ERR_MIL_INVALID_FRAME_SYNC_OUT _MODE

66 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

AS5643 Protocol APl Reference

9.1.4.2. Frame Synchronization Input Modes

The following frame synchronization input modes are available for use with the FXMilFrameTimingOptions
structure. Please note that the number of Sync Signals and Sync Buses depends on the hardware used.

FX MIL SYNC FREERUNNING

When this mode is set the bus will not synchronize to an input event
but will use an internal clock for frame timing.

On FireTrac cards this clock originates from the time input device and
therefore it may be synchronized to an IRIG time input or just be the
built-in clock depending on the way the time input device is
configured.

FX _MIL SYNC PACKET

When this mode is set the bus will listen on the specified channel for
stream packets and whenever a matching packet arrives it is
considered an synchronization input event.

FX_MIL SYNC_ SIGNAL

When this mode is set the bus will listen on an external sync input
for synchronization events. The specific sync input pin that will be
listened on is A for Node 0, B for node 1, C for node 2 and D for node
3.

FX_MIL SYNC_SIGNAL A

When this mode is set the bus will listen on an external sync input A
for synchronization events.

FX_MIL SYNC_SIGNAL B

When this mode is set the bus will listen on an external sync input B
for synchronization events.

FX_MIL SYNC_SIGNAL C

When this mode is set the bus will listen on an external sync input C
for synchronization events.

FX_MIL SYNC_SIGNAL D

When this mode is set the bus will listen on an external sync input D
for synchronization events.

FX_MIL SYNC_BUS 0

When this mode is set the bus will synchronize to the frame timer of
Bus 0. This mode can not be used on bus 0 itself.

FX MIL SYNC BUS 1

When this mode is set the bus will synchronize to the frame timer of
Bus 1. This mode can not be used on bus 1 itself.

FX_MIL SYNC_BUS 2

When this mode is set the bus will synchronize to the frame timer of
Bus 2. This mode can not be used on bus 2 itself.

FX_MIL SYNC_BUS 3

When this mode is set the bus will synchronize to the frame timer of
Bus 3. This mode can not be used on bus 3 itself.

9.1.4.3. Frame Synchronization Output Modes

The following frame synchronization output modes are available for use with the FXMilFrameTimingOptions

structure:

(Functionality only available on FireTrac V3 and later devices!)

FX_MIL SYNC_OUT NONE

When this mode is set the bus will not generate a sync pulse on any
external sync pins.

FX_MIL SYNC_OUT SIGNAL A

When this mode is set the bus will generate a sync pulse on external
sync pin A. Please make sure that only one bus will control this pin.
Please also make sure this pin is not set to input mode by any of the
buses.

FX MIL SYNC OUT SIGNAL B

When this mode is set the bus will generate a sync pulse on external
sync pin B. Please make sure that only one bus will control this pin.
Please also make sure this pin is not set to input mode by any of the
buses.

FX_MIL SYNC_OUT SIGNAL C

When this mode is set the bus will generate a sync pulse on external

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 67

AS5643 Protocol APl Reference

sync pin C. Please make sure that only one bus will control this pin.
Please also make sure this pin is not set to input mode by any of the
buses.

FX MIL SYNC OUT SIGNAL D When this mode is set the bus will generate a sync pulse on external
sync pin D. Please make sure that only one bus will control this pin.
Please also make sure this pin is not set to input mode by any of the
buses.

9.1.4.4. Frame Control Flags

The following frame control flags are available:

FX MIL_CTRLFLAG_SKIPAFTERFRAMEEND This flag is unsupported and will result in the function
call to return an error.

68 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

AS5643 Protocol APl Reference

9.2. AS5643 Reception

AS5643 reception provides a filtering mechanism that filters incoming packets based on their channel number
and/or message ID. This section forms the description of all functions needed for receiving AS5643 stream
messages.

Basically the following steps need to be taken for initialization and startup of AS5643 reception:

1. Set the channel(s) you are interested in to AS5643 mode. This will disable ISO reception on the specified
channels and hand all packets to the AS5643 reception mechanism. Please refer to the Channel
Selections section for more details.

2. Insert filter items into the filter table to include messages for reception. Messages can be filtered on
channel number or message ID or a combination of both. Each filter item is associated with a context
handle which determines the buffer locations to store the packets in. Each packet received can only be
sent to one of the reception contexts. Please refer to the Message Filters section for more details.

3. The user may use up-to 8 reception contexts, each having its own settings and buffer list. Therefore, the
user first needs to setup buffer lists for received packet storage. Each reception context can be associated
with one buffer list. For more details please refer to the Buffer Control section.

4. Use the Context Control functions to start/stop a context for reception into a specific buffer list and retrieve
current context status information.

5. Depending on settings used, each time a buffer is full or a packet is received, a user-defined callback
function is called. In case a buffer is full the user can remowe it from the buffer list and use its contents for
its own purpose. In case of a received packet callback, the user can read from the corresponding buffer but
should not remove the buffer from the list until the hardware is done writing to it.

Each time a Start Of Frame (STOF) is detected, a user-defined callback function will be called. Please refer
to the Frame Timing Section.

9.2.1. Settings

9.2.1.1. Resource Usage

The following settings can be used as settingld in an FXSetting instance passed to fxCreateBusHandle() to
control resource usage by the AS5643 Reception module for the bus that is being opened.

FX_SETTING_ID MIL RCV_MAX_BUFFERS

This setting determines the maximum number of buffers that may be appended in total to AS5643 Reception
contexts at any given point in time.
Default: 10000

9.2.2. Functions
9.2.2.1. Channel Selections

AS5643 channel selection functions can be used to choose between ISO mode (default) and AS5643 mode
reception. By default all channels will be handled by isochronous reception mechanisms unless these
functions are used to set them to AS5643 mode. If a channel is set to AS5643 mode then message filtering
and context settings will determine if and how messages will be received.

9.2.2.1.1 xMilRcvEnableChannels

Description
This function can be used to set the AS5643 mode flag for multiple channels at the same time.

Parameters

busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)

channelMask Pointer to FXChannelMask. All channel bits that are 1 will
enable the corresponding channel for AS5643 reception. All
channel bits that are 0 are left unchanged.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 69

AS5643 Protocol APl Reference

9.22.1.2

9.2.21.3

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER
FX_ERR_MIL_RCV_INTERNAL_ERROR

Synopsis

FXReturnCode fxMilRcvEnableChannels (
FXBusHandle busHandle,
const FXChannelMask¥* channelMask

)
xMilRcvDisableChannels

Description
This function can be used to clear the AS5643 mode flag for multiple channels at the same time.

Parameters
busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)
channelMask Pointer to FXChannelMask. All channel bits that are 1 will

disable the corresponding channel for AS5643 reception. All
channel bits that are 0 are left unchanged.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER
FX_ERR_MIL_RCV_INTERNAL_ERROR

Synopsis

FXReturnCode fxMilRcvDisableChannels (
FXBusHandle busHandle,
const FXChannelMask¥* channelMask

)
XMilRcvGetEnabledChannels

Description
Returns the status of the current channel mask. Bit: 0 - ISO, 1 - AS5643.

Parameters

busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)

channelMask Pointer to FXChannelMask. The current channel mask value will
be copied to this.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER

70

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

AS5643 Protocol APl Reference

FX_ERR_MIL_RCV_INTERNAL_ERROR

Synopsis

FXReturnCode fxMilRcvGetEnabledChannels (
FXBusHandle busHandle,
FXChannelMask* channelMask

)

9.2.2.2. Message Filters

If a channel is selected for AS5643 mode then all incoming packets will be run against a comprehensive
message filter system. Messages can be filtered on channel number or AS5643 message ID or a

combination of both.

Message filter functions can be used to add and removwe filter items from the message filter system. A filter

item may specify one of the following:

1. a specific MessagelD on a specific channel
2. a specific MessagelD on any channel

3. any MessagelD on a specific channel

Note that one "a specific MessagelD on any channel” filter item actually occupies 63 entries (channel 0 to
62). There are total of 4096 filter entries available.

Packets received can only be sent to one of the available reception contexts. Therefore, when adding new
filter items to the message filter system it is not allowed to add an item that would potentially cause a packet
to be matched with more than one filter item. As an example the following two filter items may not coexist in

the filter system:

e message ID = 1, channel = 2, context handle1
e message ID = 1, any channel, context handle2

The problem with those two items is that a packet with message ID = 1 on channel 2 would be matched by

both items which is not allowed. Therefore, in this case the user should just leave out the first item.

Exception in the rule of the combination of filter items is that when "any MessagelD on a specific channe

item is added, instead of returning an error if one or more "a specific MessagelD with the same channel"

items already exist, the message filter system enables the new "any MessagelD" item, and all packets with
the specified channel will be sent to the specified context. Removing "a specific messagelD" item(s) is not

required before adding the new "any MessagelD" item.

Example - assume that the message filter system already has the following filter items:
e message ID = 10, channel = 4, context handle1
e message ID = 20, channel = 4, context handle2
and then add the following new item:

¢ any message ID, channel = 4, context handle3

will result in that all packets with channel 4 will be sent to the context handle3.

Each filter item needs to specify a reception context in which a matching packet will be stored. Please refer

to the Context Control section for more information.

9.2.2.2.1 xMilRcvAddFilterltem

Description

Adds the filter item to the filter table. An error will be returned if the item causes a double match situation.

Parameters

item

Pointer to FXMilRcvFilterItem.

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

71

AS5643 Protocol APl Reference

9.22.2.2

9.2.2.2.3

9.2224

FX_ERR_INVALID_HANDLE
FX_ERR_MIL_RCV_INVALID_FILTER_ATTRIBUTES
FX_ERR_MIL_RCV_INVALID_CONTEXT_HANDLE
FX_ERR_MIL_RCV_FILTER_DOUBLE_MATCH
FX_ERR_MIL_RCV_INSUFFICIENT_FILTER_TABLE_SPACE

Synopsis
FXReturnCode fxMilRcvAddFilterItem(
const FXMilRcvFilterItem* item

)
xMilRcvRemoweFilterltem

Description
Removwes the filter item from the filter table. Note that the contextID field of the FXMilRcVFilterltem will not be
considered when this function searches for the existing filter item.

Parameters
item Pointer to FXMilRcvFilterItem.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_MIL_RCV_INVALID_CONTEXT_HANDLE
FX_ERR_MIL_RCV_INVALID_FILTER_ATTRIBUTES
FX_ERR_MIL_RCV_FILTER_ITEM_NOT_FOUND

Synopsis
FXReturnCode fxMilRcvRemoveFilterItem(
const FXMilRcvFilterItem* item

)
fxMilRcvClearMessageFilter

Description
Clears the message filter table.

Parameters

busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE

Synopsis
FXReturnCode fxMilRcvClearMessageFilter (
FXBusHandle busHandle

)
xMilRcvGetNumFilterltems

Description
This function will query for filter items. A copy of the list can be retrieved by the user by calling
xMilRcvGetFilterltemList.

72

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

AS5643 Protocol APl Reference

9.2.2.2.5

9.2.2.3.

Parameters

busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)

numFilterItems Returns the number of filter items.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the

function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER

Synopsis

FXReturnCode fxMilRcvGetNumFilterItems (
FXBusHandle busHandle,
uint32 tx* numFilterItems

)
xMilRcvGetFilterltemList

Description

This function may be called after calling to fixMilRcvGetNumFilterltems to get an array of FXMilRcVFilterltem
structures.

The user needs to take care of allocating an array and specifying its size when calling this function.

Parameters

busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)

list User-allocated filter item information list. The stack will
copy its
internal list into this one.

maxSize The number of FXMilRcvFilterItem structures that fit in the
list.

size The actual number of FXMilRcvFilterItem structures returned.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER

Synopsis

FXReturnCode fxMilRcvGetFilterItemList (
FXBusHandle busHandle,
FXMilRcvFilterItem* list,
uint32 t maxSize,
uint32 tx* size

)

Buffer Control

In order to start a context for reception, the user first needs to setup the necessary buffers for packet storage.
Buffer Control functions can be used to register memory buffers with the AS5643 reception module. The user
needs to take care of allocating memory blocks that can be used as reception buffer. As long as a piece of
memory is registered as reception buffer, the user may not free it or write to it. The user may read from it at

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 73

AS5643 Protocol APl Reference

all times. After removing a buffer from the reception list, the user may write and/or free memory again.

Buffers need to be setup such that they form a list. It is not allowed to link buffers in a loop. Having buffers in
a loop fashion would yield unspecified results.

For each buffer the user may set buffer options. However, please note that options need to be the same for all
buffers in the same list.

Multiple lists can be setup in memory and when starting a context for reception, a specific buffer can be used
as starting point for storing the packets. Please also note that adding the same buffer to more than one list
yields unspecified results.

Please refer to Receive Packet Format for a detailed specification of the received data format.

Invalid Case

Buffer ID =3 Buffer ID =12 Buffer ID = 19 Buffer ID = 25

fxMilRcvAddBuffer(12) @

X

Buffer ID = 3 Buffer ID =12 Buffer ID =19 Buffer ID = 25

gy S s B e W

MilRcvAddBuffer(25)

Valid Case

Buffer ID =3 Buffer ID = 12 Buffer ID =19 Buffer ID = 25 Buffer ID = 26

Add a new buffer to existing list - previous buffer must be the last one of a list

74

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

AS5643 Protocol APl Reference

Invalid Case
Buffer ID=13 Buffer ID = 12 Buffer ID=19 Buffer ID = 25
fxMilRevLinkBuffers{ 12, 23)
Buffer ID = 23 Buffer ID = 15 Buffer ID = 34
Valid Case
Buffer ID=3 Buffer ID = 12 Buffer ID =19
fuMilRcvLinkBuffers(18, 23)
Buffer ID = 23 A”D:']s Buffer 1D = 34
Buffer ID =3 Buffer 1D = 12 Buffer ID=19 Buffer ID =23 Buffer ID = 15 Buffer ID = 34

Link two lists of buffers - "From™ must be the last one of a list, and "To" must be the first one of another list

Buffer ID =3 Buffer ID=12 Buffer ID =192 Buffer ID = 25
= i e Y » || | e
fxMilRcvRemoveBuffer] 12)
Buffer ID =3 Buffer ID = 19 Buffer 1D = 25
Y e e .

Remove a buffer from the list
9.2.2.3.1 xMilRcvAddBuffer

Description

This function can be used to setup buffer lists that can be used by contexts to receive packets in. If
prevBufferD is set, prevBuffer's descriptor will point forward to the new buffer's descriptor. If prevBufferID is set
(forming a list) then the options must be the same as for previous buffer.

Any memory location used as buffer needs to be allocated with the fixMemAlloc.

Parameters

busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)

prevBufferID -1 specifies first buffer in list.

buffer User-specified buffer address. The buffer needs to be allocated
with fxMemAlloc () .

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

75

AS5643 Protocol APl Reference

size Buffer size in quadlets. Each buffer must be at least big
enough to hold one maximum-sized packet according to 1394 spec.
Maximum size that can be specified is 16383 quadlets (65532
bytes); Otherwise, FX_ERR MIL RCV_BUFFER_TOO_ LARGE error will
be returned.

options Pointer to FXMilRcvBufferOptions.

newBufferID Filled with a new, valid bufferID if no error is reported.

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_MIL_RCV_BUFFER_NOT_FOUND
FX_ERR_MIL_RCV_BUFFER_OPTIONS_NO_MATCH
FX_ERR_MIL_RCV_BUFFER_ALLOCATION_FAIL
FX_ERR_MIL_RCV_BUFFER_NOT_LAST_OF_LIST
FX_ERR_MIL_RCV_BUFFER_TOO_LARGE

Synopsis

FXReturnCode fxMilRcvAddBuffer (
FXBusHandle busHandle,
int32 t prevBufferID,
uint32 t* buffer,
uint32 t size,
const FXMilRcvBufferOptions* options,
uint32 t* newBufferID

)
9.2.2.3.2 fxMilRcwLinkBuffers

Description

This function can be used to link two buffer lists. It is not allowed to link a buffer list in a loop fashion.

Parameters
busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)
fromBufferID toBufferID below will be appended to this bufferID.
toBufferID This bufferID will be appended to fromBufferID above.

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_MIL_RCV_BUFFER_NOT_FOUND
FX_ERR_MIL_RCV_BUFFER_OPTIONS_NO_MATCH
FX_ERR_MIL_RCV_BUFFER_NOT_FIRST OF_LIST
FX_ERR_MIL_RCV_BUFFER_NOT_LAST OF_LIST
FX_ERR_MIL_RCV_BUFFER_LINK_SINGLE
FX_ERR_MIL_RCV_INTERNAL_ERROR

Synopsis

FXReturnCode fxMilRcvLinkBuffers (
FXBusHandle busHandle,
uint32 t fromBufferID,

76

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

AS5643 Protocol APl Reference

uint32 t toBufferID
)

9.2.2.3.3 fxMilRcvRemoveBuffer

Description
This function can be used to remove a buffer from a buffer list and reclaim ownership of its memory location.

Parameters

busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)

bufferID Buffer to remove from the list

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_MIL_RCV_BUFFER_NOT_FOUND
FX_ERR_MIL_RCV_INTERNAL_ERROR

Synopsis

FXReturnCode fxMilRcvRemoveBuffer (
FXBusHandle busHandle,
uint32 t bufferID

)
9.2.2.3.4 fxMilRcvBufferStatus

Description
This function returns the status of the specified buffer.

Parameters

contextHandle Context Handle the buffer corresponds to.
bufferID The ID of buffer.

status Pointer to FXMilRcvBufferStatus.

updateReadStatus If set to TRUE, the FireStack will update the
curReadOffset of the specified buffer ID for the next
function call and it will update the curReadBufferID of
the specified context.

If set to FALSE it will not update anything.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER
FX_ERR_MIL_RCV_INVALID_CONTEXT_HANDLE
FX_ERR_MIL_RCV_BUFFER_NOT_FOUND

Synopsis
FXReturnCode fxMilRcvBufferStatus (
FXMilRcvContextHandle contextHandle,

uint32 t bufferID,
FXMilRcvBufferStatus* status,
bool t updateReadStatus

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 77

AS5643 Protocol APl Reference

)

9.2.2.4. Context Control

9.2.2.41

The user may use up to 8 reception contexts. Each reception context can be controlled individually and the
message filter system determines which filters will deliver packets in which context. One important aspect of
a context's behavior is the way it notifies the user when new data is available.

The user may register zero to two callback functions (xMilRcvSetContextOptions). One that will be called if
new packets are available and the other one will be called if one or more buffers have been filled. The next
diagram shows two buffers that have been filled with some packets. The diagram indicates at which moments
in time the user callback functions would be called assuming that the callback functions would return
immediately (before the next event comes in).

Buffer ID =4 Buffer ID =7
A I [I | i | [] L

vl b

Packet Received Packet Received

Buffer Filled

If no callback function is set the user is supposed to periodically call xMilRcvContextStatus to retrieve the
buffer ID the hardware is currently writing to. This information can then be used to process all packets up-to
the write offset within the buffer the hardware is currently writing to, which can be retrieved by using
fxMilRcvBufferStatus. Without a callback function set, status always reflects the actual hardware status.
Although this is a supported way of operation, it is recommended to work through the callback mechanisms
described below rather then continuously polling hardware status.

If one callback function is set then the user is supposed to request current status information from within that
callback function by calling fxMilRcvContextStatus and fxMilRcvBufferStatus setting the updateReadStatus
flag to true. After the user callback function returns it will only be called again if more data is available beyond
the last writeOffset returned by fxMilRcvBufferStatus.

If at least one callback function is set then both the context and the buffer status functions will reflect the
hardware status at the moment right before the callback function was called. The status reported to the user
will not change during user callback execution.

If the user callback function returns without calling xMilRcvContextStatus and/or without calling the function
xMilRcvBufferStatus for the current write buffer ID as returned by fxMilRcvContextStatus, it will be called
again after returning because in that case the internally stored last position returned to the user still did not
catch up to the current write position.

If two callback functions are set then at least one of the two callback functions shall behave as described for
a single callback function. The second callback function in that case does not hawve to call
xMilRcvContextStatus or fxMilRcvBufferStatus.

xMilRcvCreateContextHandle

Description
This function can be used to acquire a receive context handle. The receive context handle is required when
functions and data structures that have an access to a receive context.

Parameters

busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)

78

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

AS5643 Protocol APl Reference

9.2.24.2

9.2243

contextHandle |Pointer to FXMilRcvContextHandle.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_MIL_RCV_NO_AVAILABLE_CONTEXT

Synopsis

FXReturnCode fxMilRcvCreateContextHandle (
FXBusHandle busHandle,
FXMilRcvContextHandle* contextHandle

)

xMilRcvCloseContextHandle

Description
This function frees resources used by the specified receive context handle.

Parameters

contextHandle [Handle created by fxMilRcvCreateContextHandle.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_MIL_RCV_INVALID_CONTEXT_HANDLE
FX_ERR_MIL_RCV_CONTEXT_ALREADY_CLOSED

Synopsis

FXReturnCode fxMilRcvCloseContextHandle (
FXMilRcvContextHandle contextHandle

)

xMilRcvSetContextOptions

Description
This function sets options for a receive context. These options define the behavior of a context during
reception.

Parameters

contextHandle |[Context Handle that a user wants to set options to.

options Pointer to FXMilRcvContextOptions.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER
FX_ERR_MIL_RCV_INVALID_CONTEXT_HANDLE

Synopsis

FXReturnCode fxMilRcvSetContextOptions (
FXMilRcvContextHandle contextHandle,
FXMilRcvContextOptions* options

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 79

AS5643 Protocol APl Reference

9.2.24.4

9.2.2.4.5

9.2.2.4.6

xMilRcvStartContext

Description
This function starts data reception with specific context and buffer.

Parameters

contextHandle |Context Handle that a user wants to start data reception with.

bufferID Buffer ID that a user wants to receive data.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_MIL_RCV_INVALID_CONTEXT_HANDLE
FX_ERR_MIL_RCV_BUFFER_NOT_FOUND
FX_ERR_MIL_RCV_INTERNAL_ERROR

Synopsis

FXReturnCode fxMilRcvStartContext (
FXMilRcvContextHandle contextHandle,
uint32 t bufferID

)
xMilRcvStopContext

Description
This function stops data reception on the requested context after completion of a packet currently in
progress.

Parameters

contextHandle |Context Handle that a user wants to stop data reception.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_MIL_RCV_INVALID_CONTEXT_HANDLE
FX_ERR_MIL_RCV_INTERNAL_ERROR

Synopsis
FXReturnCode fxMilRcvStopContext (
FXMilRcvContextHandle contextHandle

)
xMilRcvContextStatus

Description
This function obtains the status of specific context.

Parameters

contextHandle [Context Handle that a user wants to get status for.

status Pointer to FXMilRcvContextStatus.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

80

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

AS5643 Protocol APl Reference

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER
FX_ERR_MIL_RCV_INVALID_CONTEXT_HANDLE
FX_ERR_MIL_RCV_INTERNAL_ERROR

Synopsis

FXReturnCode fxMilRcvContextStatus (
FXMilRcvContextHandle contextHandle,
FXMilRcvContextStatus* status

)

9.2.3. Type Definitions

9.2.3.1. FXMilRcvContextHandle

Description

Handle to a receive context created by fxMilRcvCreateContextHandle function.

Synopsis

typedef uint32 t FXMilRcvContextHandle;

9.2.3.2. FXMilRcvCallback

Description

This function definition is used to specify a callback function that can be used as

e buffer full callback

e packet received callback
as specified in the context options.

Parameters
handle Reference handle to the bus to control. (see fxCreateBusHandle)
userData Pointer to the data specified in FXMilRcvEventOptions.
contextHandle |[Context Handle that is associated with the callback occurrence.
Synopsis
typedef void (*FXMilRcvCallback) {

FXBusHandle handle,

void* userData,

FXMilRcvContextHandle contextHandle

)7

9.2.4. Structures

9.2.4.1. FXMilRcvFilterftem

Description

This structure defines data members that will be used for the message filtering. A received packet with
matching channel number and messagelD will be copied to the specified context on reception.

Members

anyMessage If true, FireStack will not check messageID for filtering, and
messagelID member will have no effect.

messagelD MessageID of AS5643 data.

anyChannel If true, FireStack will not check channel number for filtering,
and channelNumber member will have no effect.

channelNumber [Channel number of a stream packet.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 81

AS5643 Protocol APl Reference

contextHandle |Matched packet will be copied to data buffer associated with
this contextHandle.
Synopsis
typedef struct {
bool t anyMessage;
uint32 t messagelD;
boolt t anyChannel;
uint32 t channelNumber;

FXMilRcvContextHandle
} FXMilRcvFilterItem;

9.2.4.2. FXMilRcvBufferOptions

Description

contextHandle;

This structure defines options used for when a new receive buffer is created.

Members
bufferMode Currently, only buffer-fill (0) mode is supported. Buffer-
fill mode means that packets are stored back to back in
the buffer until the end of the buffer is reached. Packets
that don't fit in a buffer will straddle across buffers in
this mode.
All buffers in the same list must have this setting
identical.
callBackEnabled If set to 1 (one), a callback function will be called when
the buffer is filled with packets and/or when a packet is
received. (Depending on context options)
Synopsis
typedef struct {
uint32 t bufferMode;
uint32 t callBackEnabled;

} FXMilRcvBufferOptions;

9.2.4.3. FXMilRcvBufferStatus

Description
This structure defines data fields indicating the current status of the data buffer.

Members

statusCode Current status of the buffer:
= 1: Running - Buffer is currently being or will be written
to.
= 0: Stopped - Buffer is filled.
< 0: Error - An error has occurred while the buffer was
updated. Holds an error code (TBD)

extendedStatusF |Bit flag of extra status information. Currently only one bit

lag is defined. See Buffer Status Extended Staus Bits for more
information.

bufferSize Same as the size parameter in fxMilRcvAddBuffer ().

bufferPtr Pointer to the first quadlet of the user-provided buffer
memory.

curWriteOffset Quadlet offset within buffer memory the Link Layer will write
the next data to. This field is updated after a packet has
been received and/or after a buffer has been completely

82

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

AS5643 Protocol APl Reference

filled.

curReadOffset Quadlet offset within buffer memory the user should continue
reading received data. Whenever the user makes a function
call to fxMilRcvBufferStatus function, the current value will
be copied into the user-provided structure. After that the
value of curWriteOffset will be copied to the internally
maintained curReadOffset for the next buffer status request.

nextBufferID The ID of the buffer that will be used after this one is
filled. A value of 0 means this buffer is the last one in the
list.
Synopsis
typedef struct {
int32 t statusCode;
uint32 t extendedStatusFlag;
uint32 t bufferSize;
uint32 tx* bufferPtr;
uint32 t curWriteOffset;
uint32 t curReadOffset;
uint32 t nextBufferID;

} FXMilRcvBufferStatus;

9.2.4.4. FXMilRcvEventOptions

Description
This structure defines options for a receive event.

Members
callback Specify callback function pointer or zero to clear.
(see FXMilRcvCallback)
userData Pointer to a user-specified data. The pointer will be
carried to user callback functions. (see FXMilRcvCallback)
Synopsis

typedef struct {
FXMilRcvCallback callback,
void* userData
} FXMilRcvEventOptions;

9.2.4.5. FXMilRcvContextOptions

Description
This structure defines options for a receive context.

Members

bufferFullOptions [Specify options for buffer-full event.
(see FXMilRcvEventOptions)

packetRcvOptions Specify options for packet-receive event.
(see FXMilRcvEventOptions)

Synopsis

typedef struct {
FXMilRcvEventOptions bufferFullOptions,
FXMilRcvEventOptions packetRcvOptions

} FXMilRcvContextOptions;

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

83

AS5643 Protocol APl Reference

9.2.4.6. FXMilRcvContextStatus

Description

This structure defines data members used for status inquiry for a receive context.

Members
statusCode Current status of the context:
= 1: Running - Context is currently actively receiving
packets
= 0: Stopped - Context has not yet started, stopped by
fxMilRcvStopContext, or has reached the end of receive
buffer
< 0: Error - Context has encountered an error. Holds an
error code (TBD)
curWriteBufferID This field contains the buffer ID that is currently being
written to. This basically means that any packet in
progress, or the next packet if no packet is in progress,
will be written to this buffer ID. This field will be
updated each time the hardware has completely filled a
buffer.
curReadBufferID This field contains the buffer ID the user is supposed to
continue processing data. This field is automatically
updated by the FireStack whenever fxMilRcvBufferStatus is
called.
Synopsis
typedef struct {
int32 t statusCode;
uint32 t curWriteBufferID;
uint32 t curReadBufferID;

} FXMilRcvContextStatus;

9.2.5. Constants
9.2.5.1. Error Codes

The following values may be returned by AS5643 Protocol functions.

FX ERR_MIL_RCV_FILTER_ITEM_NOT_FOUND

FX_ ERR_MIL_RCV_INVALID FILTER_ATTRIBUTES
FX_ ERR_MIL_RCV_INVALID_CONTEXT HANDLE
FX ERR_MIL_RCV_FILTER_DOUBLE_MATCH

FX_ ERR_MIL_RCV_BUFFER_OPTIONS_NO_MATCH
FX_ ERR_MIL_RCV_BUFFER_NOT_FOUND

FX_ ERR_MIL_RCV_BUFFER_ALLOCATION_FAIL
FX_ ERR_MIL_RCV_BUFFER_NOT FIRST OF _LIST
FX ERR_MIL_RCV_BUFFER_NOT LAST OF LIST
FX ERR_MIL_RCV_BUFFER_LINK_SINGLE

FX ERR_MIL_RCV_INTERNAL_ERROR

FX_ ERR_MIL_RCV_INSUFFICIENT FILTER_TABLE_SPACE
FX_ ERR_MIL_RCV_BUFFER_TOO_LARGE

FX ERR_MIL_RCV_INVALID_BUFFER_ADDRESS
FX_ ERR_MIL_RCV_NO_AVAILABLE_CONTEXT

FX_ ERR_MIL_RCV_CONTEXT ALREADY CLOSED

9.2.5.2. Buffer Status Extended Staus Bits

Name

Value Description

84

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

AS5643 Protocol APl Reference

FX MIL_RCV_BUFFER_EXT STATUS CNTX STOPPED |0x00010000 If the associated context has
stopped when this buffer is
added, this bit set to 1.

9.2.6. Data Formats
9.2.6.1. Receive Packet Format

The format of a received packet.

31[30[29|28|27]26|25]24]23]22]21]20]19]18]17]16]15]14[13]12]11][10] 9[8[7|6 [5[4 3] 2] 1] 0
data length tag channel tcode sy
stream data (include padding if needed)
timestamp seconds
time
stamp timestamp sub seconds
status
\é speed
field bitsldescription
data length 16 [Number of bytes of stream data in this packet.
tag 2 [The data format of this stream data.
channel 6 |The channel number this packet is associated with.
tcode 4 |The transaction code (should always be 0xA)
sy 4 |Synchronization control field.
stream data The data received with this packet. The last quadlet will be padded with zeroes, if
necessary.
timestamp seconds| 32 [Time stamp seconds. Offset depends on time source
timestamp sub 24 |Time stamp sub-second value. Resolution of 1 micro second.
seconds
timestamp status | 2 |Status of the time source:
0 = Invalid
1 = Free Running
2 = Synced (time output is synchronized to the IRIG input and becoming more
accurate over time)
3 = Accurate (time output is synchronized to the IRIG input with maximum
accuracy)
speed* 3 |Speed Code:
0 = 100Mb/s
1 = 200Mb/s
2 = 400Mb/s
3 = 800Mb/s
VO 1 |VPC OK - indicates the status of the VPC (Vertical Parity Check):
0 = VPC is not presented in the received packet or is invalid
1 = VPC is presented in the received packet and is valid

* speed field will likely mowve to bits 31,30,29 in the future

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 85

AS5643 Protocol APl Reference

9.3. AS5643 Transmission

FireStack AS5643 Transmission module can be used to control devices that support AS5643 timed
transmission in hardware like DapTechnology's FireTrac and FireLink Extended. FireTrac offers very accurate
transmission timing without software intervention enabling this functionality without the need for a Real-Time
operating system. Accurate transmission timing can not only be used for transmitting packets at the correct
scheduled transmission time, it also enables adding semi random jitter to the transmission timing in a very
controlled manner. Please refer to Context Options for more information.

FireStack AS5643 Transmission module is split-up in 8 individual transmission contexts. In order to transmit
any AS5643 messages the user first needs to acquire a context handle and choose the mode the context will
operate in. Several context modes have been defined, each having its own function interface that is well
chosen to control that specific mode as simple as possible.

The following transmission modes are available:

Streaming This mode allows the user to write large or small sets of messages to the FireStack
Messages and have them transmitted automatically on the specified frame offset times. The
provided data needs to contain so called frame separator elements to indicate the
following message needs to be transmitted in the next frame.

(please refer to Streaming Messages Mode for more information)

Repeating This mode allows the user to setup a message that will automatically be transmitted
Messages each frame by the FireStack. The user will have a pointer to the actual data of the
message and is allowed to manipulate the data at any point in time without having to
worry about its timed transmission. Very useful for AS5643 status messages.
(please refer to Repeating Messages Mode for more information)

Single Message This mode allows the user to simply transmit a message as soon as possible but
exactly at the specified frame offset time. Several messages may be handed to the
FireStack for immediate transmission and the FireStack will then take care of the
actual moment of transmission.

(please refer to Single Message Mode for more information)

STOF Message This mode allows the user to control transmission of STOF messages.
(please refer to STOF Message Mode for more information)

9.3.1. Settings

9.3.1.1. Resource Usage

The following settings can be used as settingld in an FXSetting instance passed to fxCreateBusHandle() to
control resource usage by the AS5643 Reception module for the bus that is being opened.

FX_SETTING_ID MIL_TRM MAX BUFFERS

This setting determines the maximum number of packets that may reside in total in all of the AS5643
Transmission contexts combined at any given point in time.

Default: 10000

9.3.2. Functions

9.3.2.1. Context Management
9.3.2.1.1 &MilTrmCreateContextHandle

Description

In order for a user to transmit messages he needs to acquire a handle to a AS5643 transmission context and
set it in a specific mode. This function can be used to acquire a context handle and choose a mode to
operate in. Please note that only one context with the FX_MIL_TRM_MODE_STOF mode can be
created per one bus handle.

86

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

AS5643 Protocol APl Reference

9.3.21.2

For more advanced control over the way a context behaves, please use the function
XMilTrmCreateContextHandle() instead. This function allows, for example, applying semi random jitter to the
transmission times of messages to be transmitted.

Parameters
busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)
mode Controls the transmission mode the context will be opened in.

(see Context Modes)

contextHandle |Pointer to user-allocated variable that will return a handle to a context upon success.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_MIL_TRM_NO_AVAILABLE_CONTEXT
FX_ERR_MIL_TRM_INVALID_CONTEXT_MODE
FX_ERR_MIL_TRM_INTERNAL_ERROR
FX_ERR_LICENSE_MODULE

Synopsis

FXReturnCode fxMilTrmCreateContextHandle (
FXBusHandle busHandle,
uint32 t mode,
FXMilTrmContextHandle* contextHandle

)

XMilTrmCreateContextHandleExt

Description

In order for a user to transmit messages he needs to acquire a handle to a AS5643 transmission context and
set it in a specific mode. This function can be used to acquire a context handle and choose a mode to
operate in. Please note that only one context with the FX_MIL_TRM_MODE_STOF mode can be
created per one bus handle.

Parameters

busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)

optionList Pointer to a user defined list of FXMilTrmContextOption elements that together form the
options for the context to be created. For available options and their default values,
please refer to Context Options. Options that are not specified will just use default
values.

listSize Specifies the number of items in the optionList.

contextHandle |Pointer to user-allocated variable that will return a handle to a context upon success.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_MIL_TRM_NO_AVAILABLE_CONTEXT
FX_ERR_MIL_TRM_INVALID_CONTEXT_MODE
FX_ERR_MIL_TRM_INTERNAL_ERROR
FX_ERR_LICENSE_MODULE

Synopsis

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 87

AS5643 Protocol APl Reference

FXReturnCode fxMilTrmCreateContextHandle (

FXBusHandle busHandle,
FXMilTrmContextOption* optionList,
size t listSize,
FXMilTrmContextHandle* contextHandle

)
9.3.2.1.3 XMilTrmCloseContextHandle

Description
This function can be used to release an AS5643 transmission context. Please make sure to release
corresponding resources like message handles. This function immediately stops the context if it is running.

Parameters

handle Reference handle to the context to control.
(see fxMilTrmCreateContextHandle)

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_MIL_TRM_INVALID_CONTEXT_HANDLE
FX_ERR_MIL_TRM_INTERNAL_ERROR
FX_ERR_LICENSE_MODULE

Synopsis
FXReturnCode fxMilTrmCloseContextHandle (
FXMilTrmContextHandle handle

)
9.3.2.2. Single Message Mode

Sometimes it is useful to have a simple interface to just send out a message once as soon as possible but
taking into account its frame offset time. This can be done by claiming a context in single message mode
and then use one of the following functions.

9.3.2.2.1 xMilTrmMessage

Description

This function can be used to schedule a message for transmission at a specific transmit offset time but as
soon as possible. The function will just hand the message to the FireStack and then returns right away. The
FireStack will then take care of actually transmitting it in one of the next frames at its frame offset time.

Parameters

handle Reference handle to the context to control. The context handle must be created with
FX MIL TRM MODE SINGLE as context mode.
(see xMilTrmCreateContextHandle)

optionList Pointer to a user defined list of FXMilTrmMessageOption elements that together form
the options for the message to be transmitted. For available options and their default
values, please refer to Message Options. Options that are not specified will just use

default values.

listSize Specifies the number of items in the optionList.

data Pointer to a DMA-capable buffer allocated by the user. The buffer will be used as
message data including the VPC field but excluding the data CRC.
(see ixMemAlloc for allocating DMA-capable buffers)

dataSize Size of data in bytes.

callback Specifies a user-defined callback function that will be called after specified message
has been transmitted or if an error occurred. A value of zero indicates that no callback

88 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

AS5643 Protocol APl Reference

9.3.2.2.2

is needed.

userdata

This is a convenience feature that allows caller to specify arbitrary user data that fits in
a variable of type woid*. FireStack will not touch what is provided here. The exact value
provided will be handed back to the user when the callback function is called.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_FIRESTACK_DEMO_TIMEOUT
FX_ERR_FIRESTACK_NOT_INITIALIZED
FX_ERR_INVALID_PARAMETER
FX_ERR_INVALID_ADDRESS
FX_ERR_MIL_TRM_INTERNAL_ERROR
FX_ERR_MIL_TRM_INVALID_BUFFER_ADDRESS
FX_ERR_MIL_TRM_INVALID_CONTEXT_HANDLE
FX_ERR_MIL_TRM_INVALID_CONTEXT_MODE
FX_ERR_LICENSE_DEVICE
FX_ERR_LICENSE_MODULE
FX_ERR_MIL_TRM_OUT_OF_INTERNAL_RESOURCE
FX_ERR_MODULE_NOT_ENABLED

Synopsis

FXReturnCode fxMilTrmMessage (
FXMilTrmContextHandle handle,
const FXMilTrmMessageOption* optionlList,
size t listSize,
const void* data,
size t datasize,
FXMilTrmCallback callback,
void* userData

)

XMilTrmSplitMessage

Description
This function does the same as fxMilTrmMessage except that the message data is specified by a list of data
buffers rather than just one. Even though hardware DMA will be used to copy the data from the buffer
locations into the transmission FIFO, this function is less efficient than fxMilTrmMessage. Please be aware of
possible performance degradation when using this function.

Parameters

handle Reference handle to the context to control. The context handle must be created with
FX MIL_TRM_MODE_SINGLE as context mode.
(see xMilTrmCreateContextHandle)

optionList Pointer to a user defined list of FXMilTrmMessageOption elements that together form
the options for the message to be transmitted. For available options and their default
values, please refer to Message Options. Options that are not specified will just use
default values.

listSize Specifies the number of items in the optionList.

bufferList Ordered list of FXBuffer elements that together form the message data including VPC
but excluding CRC. If less than 5 buffers are needed then just set the size of the last
buffer(s) to zero.

callback Specifies a user-defined callback function that will be called after specified message
has been transmitted or if an error occurred. A value of zero indicates that no callback
is needed.

userdata This is a convenience feature that allows caller to specify arbitrary user data that fits in

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

89

AS5643 Protocol APl Reference

a variable of type wid*. FireStack will not touch what is provided here. The exact value
provided will be handed back to the user when the callback function is called.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_FIRESTACK_DEMO_TIMEOUT
FX_ERR_FIRESTACK_NOT_INITIALIZED
FX_ERR_INVALID_PARAMETER
FX_ERR_INVALID_ADDRESS
FX_ERR_LICENSE_DEVICE
FX_ERR_LICENSE_MODULE
FX_ERR_MIL_TRM_INTERNAL_ERROR
FX_ERR_MIL_TRM_INVALID_CONTEXT_HANDLE
FX_ERR_MIL_TRM_INVALID_CONTEXT_MODE
FX_ERR_MIL_TRM_OUT_OF_INTERNAL_RESOURCE
FX_ERR_MODULE_NOT_ENABLED

Synopsis

FXReturnCode fxMilTrmSplitMessage (
FXMilTrmContextHandle handle,
const FXMilTrmMessageOption* optionList,
size t listSize,
FXBuffer bufferList[5],
FXMilTrmCallback callback,
void* userdata

)

9.3.2.3. Streaming Messages Mode

9.3.2.3.1

In streaming mode the user can append large (or small) numbers of messages to a context. The user is
required to supply the messages ordered on transmit offset time and needs to insert frame separator
elements whenever the following frame should start.

Message data needs to be placed in DMA-capable memory buffers allocated with the FireStack function
xMemAlloc just like the reception buffers. FireStack will offer a zero-copy transmit API for messages in such
buffers. FireStack will use hardware DMA to place the data buffers directly in the transmit FiFo without
software intervention.

A flexible interface is available for appending the messages. Whenever a set of messages is appended
options may be specified that apply to the complete set and overruling options may be specified per individual
message.

The user may choose from seweral different ways of adding messages to the streaming mode context. It is
allowed to mix the three functions for the same context. Each way of adding messages allows the user to
register a callback function that will be called upon completion of the messages provided.

XMilTrmStrmWritelmmediate

Description

After a context handle has been created in FX MIL_ TRM_MODE STREAMING mode this function can be
used to append messages to the transmission queue. This function may be called before the context is
started or when it is already running. Using this function a set of messages can be appended at once,
optionally including frame separator items to prepare a complete message stream ahead of time. This
function may be mixed with function calls to other ixMilTrmStreamWrite.. functions.

This function should be used when all messages to be transmitted are in one large data buffer including frame
separator elements.

90

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

AS5643 Protocol APl Reference

Parameters

handle Reference handle to the context to control. The context handle must be created with
FX MIL TRM MODE STREAMING as context mode.
(see XMilTrmCreateContextHandle)

data Data points to one large buffer containing all the messages back-to-back optionally with
a list of options per message. Data format may be one of the formats defined in

section Data Formats and can be selected by specifying the data format option in the
optionList. Data must point to DMA-capable memory. All messages will use the
options resulting from defaults and optionList unless if the message itself contains
overriding options.

(see ixMemAlloc for allocating DMA-capable buffers)

dataSize Size of data in bytes.

callback Specifies a user-defined callback function that will be called after all specified
messages have been transmitted or if an error occurred. A value of zero indicates that
no callback is needed.

userData This is a convenience feature that allows caller to specify arbitrary user data that fits in
a variable of type woid*. FireStack will not touch what is provided here. The exact value
provided will be handed back to the user when the callback function is called.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_INVALID_PARAMETER
FX_ERR_INVALID_ADDRESS
FX_ERR_MIL_TRM_INVALID_BUFFER_ADDRESS
FX_ERR_MIL_TRM_INVALID_CONTEXT_HANDLE
FX_ERR_MIL_TRM_INVALID_CONTEXT_MODE
FX_ERR_MIL_TRM_STRM_DATA_FORMAT_ERROR
FX_ERR_MIL_TRM_INTERNAL_ERROR
FX_ERR_LICENSE_MODULE

Synopsis

FXReturnCode fxMilTrmStrmWriteImmediate (
FXMilTrmContextHandle handle,
void* data,
size t datasize,
FXMilTrmCallback callback,
void* userData

)
9.3.2.3.2 &XMilTrmStrmWriteMessageList

Description

After a context handle has been created in FX MIL_TRM_MODE_STREAMING mode this function can be
used to append messages to the transmission queue. This function may be called before the context is
started or when it is already running. Using this function a set of messages can be appended at once,
optionally including frame separator items to prepare a complete message stream ahead of time. This
function may be mixed with function calls to other xMilTrmStreamWrite.. functions.

This function should be used when the data for each message is located in its own single buffer. A list
containing FXMilTrmMessage items needs to be created by the user, each item pointing to a data buffer and
containing message options.

Parameters

handle Reference handle to the context to control. The context handle must be created with
FX MIL TRM MODE STREAMING as context mode.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 91

AS5643 Protocol APl Reference

9.3.2.3.3

(see XMilTrmCreateContextHandle)

optionList Pointer to a user defined list of FXMilTrmMessageOption elements that together form
the options for all messages to be transmitted. For available options and their default
values, please refer to Message Options. Options that are not specified will just use

default values. Options specified per message will override what is specified here.

optionListSize |Specifies the number of items in the optionList.

messageList List of FXMilTrmMessage items to append to the transmission queue.

messageListSize |Number of items in messagelList.

callback Specifies a user-defined callback function that will be called after all specified
messages have been transmitted or if an error occurred. A value of zero indicates that
no callback is needed.

userData This is a convenience feature that allows caller to specify arbitrary user data that fits in
a variable of type wid*. FireStack will not touch what is provided here. The exact value

provided will be handed back to the user when the callback function is called.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_INVALID_PARAMETER
FX_ERR_INVALID_ADDRESS
FX_ERR_MIL_TRM_INVALID_BUFFER_ADDRESS
FX_ERR_MIL_TRM_INVALID_CONTEXT_HANDLE
FX_ERR_MIL_TRM_INVALID_CONTEXT_MODE
FX_ERR_MIL_TRM_STRM_DATA_FORMAT_ERROR
FX_ERR_MIL_TRM_OUT_OF_INTERNAL_RESOURCE
FX_ERR_MIL_TRM_INTERNAL_ERROR
FX_ERR_LICENSE_MODULE

Synopsis

FXReturnCode fxMilTrmStrmWriteMessagelist (
FXMilTrmContextHandle handle,
FXMilTrmMessageOption* optionList,
size t optionListSize,
FXMilTrmMessage* messagelist,
size t messagelListSize,
FXMilTrmCallback callback,
void* userData

)
XMilTrmStrmWriteSplitMessageList

Description

After a context handle has been created in FX MIL_TRM_MODE_STREAMING mode this function can be
used to append messages to the transmission queue. This function may be called before the context is
started or when it is already running. Using this function a set of messages can be appended at once,
optionally including frame separator items to prepare a complete message stream ahead of time. This
function may be mixed with function calls to other fxMilTrmStreamWrite.. functions.

This function should be used when the data for each message is located in sewveral buffers. A list containing
FXMilTrmSplitMessage items needs to be created by the user, each item pointing to all buffers that make up
the message and each item specifying message options.

Parameters

handle Reference handle to the context to control. The context handle must be created with
FX MIL TRM MODE STREAMING as context mode.
(see XMilTrmCreateContextHandle)

92

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

AS5643 Protocol APl Reference

9.3.2.3.4

optionList Pointer to a user defined list of FXMilTrmMessageOption elements that together form
the options for all messages to be transmitted. For available options and their default
values, please refer to Message Options. Options that are not specified will just use
default values. Options specified per message will override what is specified here.

optionListSize |Specifies the number of items in the optionList.

messagelList List of FXMilTrmSplitMessage items to append to the transmission queue.

messageListSize |Number of items in messagelist.

callback Specifies a user-defined callback function that will be called after all specified
messages have been transmitted or if an error occurred. A value of zero indicates that
no callback is needed.

userData This is a convenience feature that allows caller to specify arbitrary user data that fits in
a variable of type woid*. FireStack will not touch what is provided here. The exact value

provided will be handed back to the user when the callback function is called.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_INVALID_PARAMETER
FX_ERR_INVALID_ADDRESS
FX_ERR_MIL_TRM_INVALID_BUFFER_ADDRESS
FX_ERR_MIL_TRM_INVALID_CONTEXT_HANDLE
FX_ERR_MIL_TRM_INVALID_CONTEXT_MODE
FX_ERR_MIL_TRM_STRM_DATA_FORMAT_ERROR
FX_ERR_MIL_TRM_OUT_OF_INTERNAL_RESOURCE
FX_ERR_MIL_TRM_INTERNAL_ERROR
FX_ERR_LICENSE_MODULE

Synopsis

FXReturnCode fxMilTrmStrmWriteSplitMessageList (
FXMilTrmContextHandle handle,
FXMilTrmMessageOption* optionlList,
size t optionListSize,
FXMilTrmSplitMessage* messagelist,
size t messagelistSize,
FXMilTrmCallback callback,
void* userData

)

XMilTrmStrmStart

Description

This function can be used to start transmission of queued messages. Please make sure to first write at least
some messages to the queue. After the context has been started the user is supposed to stay ahead of
transmission with appending new messages. If transmission reaches the end of the queue, the context is
stopped.

Parameters

handle Reference handle to the context to control. The context handle must be created with
FX MIL TRM MODE STREAMING as context mode.
(see xMilTrmCreateContextHandle)

frameNumber Resenrved for future use.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to look up descriptions corresponding to negative return values.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

93

AS5643 Protocol APl Reference

9.3.2.3.5

9.3.2.3.6

FX_ERR_MIL_TRM_INVALID_CONTEXT_MODE
FX_ERR_MIL_TRM_INVALID_CONTEXT_HANDLE
FX_ERR_MIL_TRM_INTERNAL_ERROR
FX_ERR_MIL_TRM_STRM_EMPTY
FX_ERR_MIL_TRM_CONTEXT_ALREADY_STARTED
FX_ERR_LICENSE_MODULE

Synopsis

FXReturnCode fxMilTrmStrmStart (
FXMilTrmContextHandle handle,
int32 t frameNumber

)
XMilTrmStrmStop

Description
This function can be used to stop transmission of queued messages. The context will remember at what
message it stopped and a function call to xMilTrmStrmStart will resume transmission where it stopped.

Parameters

handle Reference handle to the context to control. The context handle

must be created with FX MIL TRM MODE STREAMING as context mode.
(see fxMilTrmCreateContextHandle)

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_MIL_TRM_INVALID_CONTEXT_MODE
FX_ERR_MIL_TRM_INVALID_CONTEXT_HANDLE
FX_ERR_MIL_TRM_INTERNAL_ERROR
FX_ERR_MIL_TRM_CONTEXT_ALREADY_STOPPED
FX_ERR_MIL_TRM_OUT_OF_INTERNAL_RESOURCE

Synopsis
FXReturnCode £fxMilTrmStrmStop (
FXMilTrmContextHandle handle

)
XMilTrmStrmClear

Description

This function will clear the transmit queue. This function also stops the context if it is running before clearing
the queue. After this function is called, the user becomes the owner of all buffers the stream had. They may
now safely be freed.

Parameters

handle Reference handle to the context to control. The context handle

must be created with FX MIL TRM MODE STREAMING as context mode.

(see fxMilTrmCreateContextHandle)

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_MIL_TRM_INVALID_CONTEXT_MODE
FX_ERR_MIL_TRM_INVALID_CONTEXT_HANDLE
FX_ERR_MIL_TRM_INTERNAL_ERROR

Synopsis

94

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

AS5643 Protocol APl Reference

9.3.2.3.7

FXReturnCode fxMilTrmStrmClear (
FXMilTrmContextHandle handle

)
XMilTrmStrmGetStatus

Description
This function returns the current status of the specified stream context.

Parameters

handle Reference handle to the context to control. The context handle must be created with
FX MIL TRM MODE STREAMING as context mode.
(see xMilTrmCreateContextHandle)

status Pointer to variable of EXMilTrmStrmStatus.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_MIL_TRM_INVALID_CONTEXT_MODE
FX_ERR_MIL_TRM_INVALID_CONTEXT_HANDLE
FX_ERR_INVALID_PARAMETER

Synopsis

FXReturnCode fxMilTrmStrmGetStatus (
FXMilTrmContextHandle handle,
FXMilTrmStrmStatus* status

)

9.3.2.4. Repeating Messages Mode

It is very common for an AS5643 remote node to be required to periodically output status information
messages. This could for example be vehicle information like fuel levels, current speed or any other sensor
information. FireStack offers a very simple interface for outputting a status message every frame at its
transmit offset time without software intervention.

Each status message needs to be setup with some options like transmit offset time, speed, channel number
and auto VPC calculation. Then it needs to have a pointer to DMA-capable memory buffer for its message
data section. After the message is started it will transmit a 1394 packet each frame and it will use the
provided buffer pointer over and over again as message data.

As the user also knows about the buffer pointer he can manipulate that message data at any point in time
and whenever the transmit offset time of this message occurs the FireStack will just send out the data that
happens to be set at that moment in time.

So let's assume we have a simple status message that contains one signal representing the current speed.
The user creates the message, sets its options, writes an initial value of 100Miles/hour to the buffer pointer
and initializes the heartbeat value to one. Now the FireStack will start transmitting this message every frame
at its frame offset time. If the user doesn't write to the heartbeat field then the receiving node will know that it
is receiving the same speed value each frame over and over again and will just ignore all messages after the
first one received.

Now the sensor detects that the speed has changed to 150miles/hour. The user application first writes the
new speed to the message buffer and then increments the heartbeat. The next time after these write actions
the FireTrac will arrive at the frame offset time for this message it will automatically transmit the updated data.

Please be aware that the two write actions the the message buffer are non-atomic, meaning that potentially
the message can be sent with the new speed value but the old heartbeat value. For most AS5643
implementations this should not be a problem as the message will be considered stale data as the heartbeat
did not change since the last time the message was received by the other node.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 95

AS5643 Protocol APl Reference

In repeating message mode the user can create and free message handles. A message handle allows a user
to control that message throughout its lifetime. Messages created this way will automatically be maintained
by FireStack. Functions for setting up a repeating message are defined below.

After the user has supplied FireStack with data pointer he is still allowed to write to those memory locations
but memory should not be freed until the user has reclaimed ownership of the buffers. Please be aware that
writing several quadlets to a memory buffer is not an atomic action and the message could be transmitted in
between two quadlet writes. For atomic data updates the complete buffer needs to be replaced by another
one. This can be done by using the functions for setting message data.

Optionally a user can specify a frame skip count. By default, each message will be transmitted at every
frame, but specifying a number when a context is created, a message transmission can skip N frame(s).
Refer to Context Options section for how to use this option and its valid data range.

9.3.2.4.1 &MilTrmCreateMessageHandle

Description

In repeating message mode the user can create and free message handles. A message handle allows a user
to control the message throughout its lifetime. Messages created this way will automatically be maintained
by FireStack.

Parameters

contextHandle Reference handle to the context to control. The context handle must be created with
FX MIL_ TRM_MODE_REPEATING as context mode.
(see xMilTrmCreateContextHandle)

optionList Pointer to a user defined list of EXMilTrmMessageOption elements that together form
the options for the message to be transmitted. For available options and their default
values, please refer to Message Options. Options that are not specified will just use
default values.

listSize Specifies the number of items in the optionList.

messageHandle Pointer to user allocated variable of type FXMilTrmMessageHandle. Will return a handle
to the newly created message on success.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_INVALID_PARAMETER
FX_ERR_MIL_TRM_INVALID_CONTEXT_HANDLE
FX_ERR_MIL_TRM_INVALID_CONTEXT_MODE
FX_ERR_MIL_TRM_OUT_OF_INTERNAL_RESOURCE
FX_ERR_MIL_TRM_INTERNAL_ERROR
FX_ERR_LICENSE_MODULE

Synopsis

FXReturnCode fxMilTrmCreateMessageHandle (
FXMilTrmContextHandle contextHandle,
FXMilTrmMessageOption* optionList,
size t listSize,
FXMilTrmMessageHandle* messageHandle

)

9.3.2.4.2 XMilTrmCreateMessageHandleExt

Description

In repeating message mode the user can create and free message handles. A message handle allows a user
to control the message throughout its lifetime. Messages created this way will automatically be maintained
by FireStack. This function allows users to add a callback function that is called upon a completion of every

96

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

AS5643 Protocol APl Reference

transmission of the message.

Parameters

contextHandle

Reference handle to the context to control. The context handle must be created with
FX MIL TRM MODE REPEATING as context mode.

(see xMilTrmCreateContextHandle)

optionList

Pointer to a user defined list of EXMilTrmMessageOption elements that together form
the options for the message to be transmitted. For available options and their default
values, please refer to Message Options. Options that are not specified will just use
default values.

listSize

Specifies the number of items in the optionList.

callback

Specifies a user-defined callback function that will be called at every time specified
message has been transmitted or if an error occurred. A value of zero indicates that no
callback is needed.

userData

This is a convenience feature that allows caller to specify arbitrary user data that fits in
a variable of type woid*. FireStack will not touch what is provided here. The exact value
provided will be handed back to the user when the callback function is called.

messageHandle

Pointer to user allocated variable of type FXMilTrmMessageHandle. Will return a handle
to the newly created message on success.

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function xGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_INVALID_PARAMETER
FX_ERR_MIL_TRM_INVALID_CONTEXT_HANDLE
FX_ERR_MIL_TRM_INVALID_CONTEXT_MODE
FX_ERR_MIL_TRM_OUT_OF_INTERNAL_RESOURCE
FX_ERR_MIL_TRM_INTERNAL_ERROR
FX_ERR_LICENSE_MODULE
FX_ERR_FIRESTACK_DEMO_TIMEOUT
FX_ERR_LICENSE_EXPIRED

Synopsis

FXReturnCode fxMilTrmCreateMessageHandleExt (
FXMilTrmContextHandle contextHandle,
FXMilTrmMessageOption* optionlist,
size t listSize,
FXMilTrmCallback callback,
void* userData,
FXMilTrmMessageHandlex* messageHandle

)

9.3.2.4.3 xMilTrmCloseMessageHandle

Description

This function can be used to release a handle to a message. After this function is called the user becomes
the owner of the buffer(s) the message pointed to. They may now safely be freed.

Parameters

handle

Reference handle to the message to control.
(see xMilTrmCreateMessageHandle)

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 97

AS5643 Protocol APl Reference

9.3.24.4

9.3.2.4.5

FX_ERR_MIL_TRM_INVALID_MESSAGE_HANDLE
FX_ERR_MIL_TRM_INTERNAL_ERROR

Synopsis

FXReturnCode fxMilTrmCloseMessageHandle (
FXMilTrmMessageHandle handle

)

XMilTrmSetMessageData

Description

This function will either just set the message data pointer(s) or replace the existing one(s). If the existing one
is replaced then atfter the function call the user is allowed to take ownership of the previous buffer. In a
replacing case, the message data must have been set by the same function, otherwise, an error code

(FX_ ERR_MIL_TRM_RPT_MESSAGE_DATA_MISMATCH) will be returned.

Parameters

handle Reference handle to the message to control.
(see xMilTrmCreateMessageHandle)

data Pointer to a DMA-capable buffer allocated by the user. The buffer will be used as
message data including the VPC field but excluding the data CRC.
(see xMemAlloc for allocating DMA-capable buffers)

size Size of data in bytes.

frameNumber Reserved for future use.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_INVALID_PARAMETER
FX_ERR_INVALID_ADDRESS
FX_ERR_MIL_TRM_INVALID_MESSAGE_HANDLE
FX_ERR_MIL_TRM_OUT_OF_INTERNAL_RESOURCE
FX_ERR_MIL_TRM_INTERNAL_ERROR
FX_ERR_LICENSE_MODULE
FX_ERR_MIL_TRM_MSG_EXCEED_MAX_PAYLOAD_SIZE
FX_ERR_MIL_TRM_RPT_MESSAGE_DATA_MISMATCH

Synopsis

FXReturnCode fxMilTrmSetMessageData (
FXMilTrmMessageHandle handle,
void* data,
size t size,
int32 t frameNumber

)
XMilTrmSetMessageSplitData

Description

This function will either just set the message data pointer(s) or replace the existing one(s). If the existing one
is replaced then after the function call the user is allowed to take ownership of the previous buffer. In a
replacing case, the message data must have been set by the same function with the same number of split
size, otherwise, an error code (FX ERR_MIL_TRM_RPT_MESSAGE_DATA_MISMATCH) will be returned.

Parameters
handle Reference handle to the message to control.
(see XMilTrmCreateMessageHandle)
bufferList Orderd list of FXBuffer elements that together form the message data including VPC but

98

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

AS5643 Protocol APl Reference

excluding CRC. If less than 5 buffers are needed then just set the size of the last
buffer(s) to zero.

frameNumber

Reserved for future use.

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_INVALID_PARAMETER
FX_ERR_INVALID_ADDRESS
FX_ERR_MIL_TRM_INVALID_MESSAGE_HANDLE
FX_ERR_MIL_TRM_OUT_OF_INTERNAL_RESOURCE
FX_ERR_LICENSE_MODULE
FX_ERR_MIL_TRM_INTERNAL_ERROR
FX_ERR_MIL_TRM_MSG_EXCEED_MAX_PAYLOAD_SIZE
FX_ERR_MIL_TRM_RPT_MESSAGE_DATA_MISMATCH

Synopsis

FXReturnCode fxMilTrmSetMessageSplitData (
FXMilTrmMessageHandle handle,
FXBuffer bufferList[5],

int32 t
)

frameNumber

9.3.2.4.6 xMilTrmSetMessageOptions

Description

This function can be used to modify the options of a repeating message.

Parameters

handle Reference handle to the message to control.
(see xMilTrmCreateMessageHandle)

optionList Pointer to a user defined list of EXMilTrmMessageOption elements that together form
the options for the message to be transmitted. For available options and their default
values, please refer to Message Options. Please note that the offset time option
cannot be changed by this function.

listSize Specifies the number of items in the optionList.

frameNumber Reserved for future use.

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function xGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_MIL_TRM_INVALID_MESSAGE_HANDLE
FX_ERR_MIL_TRM_INTERNAL_ERROR
FX_ERR_MIL_TRM_MSG_DATA_NOT_SET
FX_ERR_LICENSE_MODULE
FX_ERR_FIRESTACK_DEMO_TIMEOUT
FX_ERR_LICENSE_EXPIRED

Synopsis

FXReturnCode fxMilTrmSetMessageOptions (
FXMilTrmMessageHandle handle,
FXMilTrmMessageOption* optionlList,
size t listSize,
int32 t frameNumber

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

99

AS5643 Protocol APl Reference

9.3.2.4.7 &xMilTrmStartMessage

Description

This function can be used to start transmission of a repeating messages. Please make sure to first set the
message data. Whenever a repeating message is in the started state it will be transmitted in every frame at
its frame offset time until it is stopped.

Parameters

handle Reference handle to the message to control.
(see xMilTrmCreateMessageHandle)

frameNumber Resenrved for future use.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_MIL_TRM_INVALID_MESSAGE_HANDLE
FX_ERR_MIL_TRM_INTERNAL_ERROR
FX_ERR_LICENSE_MODULE
FX_ERR_MIL_TRM_MSG_DATA_NOT_SET

Synopsis

FXReturnCode fxMilTrmStartMessage (
FXMilTrmMessageHandle handle,
int32 t frameNumber

)
9.3.2.4.8 xMilTrmStopMessage

Description
Set a repeating message in the stopped state, preventing it from being transmitted in each frame.

Parameters

handle Reference handle to the message to control.
(see xMilTrmCreateMessageHandle)

frameNumber Resenrved for future use.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_MIL_TRM_INVALID_MESSAGE_HANDLE
FX_ERR_LICENSE_MODULE
FX_ERR_MIL_TRM_MSG_DATA_NOT_SET
FX_ERR_MIL_TRM_INTERNAL_ERROR

Synopsis

FXReturnCode fxMilTrmStopMessage (
FXMilTrmMessageHandle handle,
int32 t frameNumber

)
9.3.2.4.9 xMilTrmGetMessageStatus

Description
This function returns the current status of the specified message.

Parameters
handle Reference handle to the message to control.

100 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

AS5643 Protocol APl Reference

(see xMilTrmCreateMessageHandle)

status Pointer to variable of FXMilTrmMessageStatus.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_INVALID_PARAMETER
FX_ERR_MIL_TRM_INVALID_MESSAGE_HANDLE

Synopsis

FXReturnCode fxMilTrmGetMessageStatus (
FXMilTrmMessageHandle handle,
FXMilTrmMessageStatus* status

)

9.3.2.5. STOF Message Mode

9.3.2.5.1

9.3.2.5.2

STOF mode will allow the user to set a complete context in a mode where it can transmit STOF messages.
As this context has a very specific task we can also define functions that are really specific to STOF
messages. It should also be possible to do atomic data updates and maybe even scheduled data updates
and start/stop.

XMilTrmSetStofMessageOptions

Description
This function can be used to specify options for the STOF message.

Parameters

handle Reference handle to the context to control. The context handle must be created with
FX MIL_TRM_MODE_STOF as context mode.
(see XMilTrmCreateContextHandle)

optionList User defined list of EXMilTrmMessageOption elements that together form the options for
the STOF message. For available options please refer to STOF Message Options.
Options that are not specified will just use default values.

listSize Specifies the number of items in the optionList.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function xGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_MIL_TRM_INVALID_CONTEXT_HANDLE
FX_ERR_MIL_TRM_INVALID_CONTEXT_MODE

Synopsis

FXReturnCode fxMilTrmSetStofMessageOptions (
FXMilTrmContextHandle handle,
FXMilTrmMessageOption* optionlist,
size t listSize

)

XMilTrmWriteStofMessage

Description
This function will update the STOF message contents with the specified values. The data is copied into
internal buffers by the FireStack and the user remains owner of the provided STOF message data.

Parameters
handle Reference handle to the context to control.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 101

AS5643 Protocol APl Reference

9.3.2.5.3

9.3.2.54

(see XMilTrmCreateContextHandle)

stofMessage User provided pointer to a FXMilStofMessage structure to be used as new STOF
message contents. Stack will copy the data such that the user remains the owner of
the specified data pointer.

frameNumber Resenved for future use.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_MIL_TRM_INVALID_CONTEXT_HANDLE
FX_ERR_MIL_TRM_INVALID_CONTEXT_MODE
FX_ERR_MIL_TRM_OUT_OF_INTERNAL_RESOURCE
FX_ERR_MIL_TRM_INTERNAL_ERROR
FX_ERR_LICENSE_MODULE

Synopsis

FXReturnCode fxMilTrmWriteStofMessage (
FXMilTrmContextHandle handle,
const FXMilStofMessage* stofMessage,
int32 t frameNumber

)
XMilTrmStartStofMessage

Description
This function can be used to start transmission of a STOF packet. Please first set the options for the STOF
packet in write some data to it before starting.

Parameters

handle Reference handle to the context to control.
(see xMilTrmCreateContextHandle)

frameNumber Resenrved for future use.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_MIL_TRM_INVALID_CONTEXT_HANDLE
FX_ERR_MIL_TRM_INVALID_CONTEXT_MODE
FX_ERR_MIL_TRM_INTERNAL_ERROR
FX_ERR_LICENSE_MODULE

Synopsis

FXReturnCode fxMilTrmStartStofMessage (
FXMilTrmContextHandle handle,
int32 t frameNumber

)
XMilTrmStopStofMessage

Description
This function can be used to stop transmission of the STOF packet.

Parameters

handle Reference handle to the context to control.
(see xMilTrmCreateContextHandle)

frameNumber Resenrved for future use.

102

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

AS5643 Protocol APl Reference

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_MIL_TRM_INVALID_CONTEXT_HANDLE
FX_ERR_MIL_TRM_INVALID_CONTEXT_MODE
FX_ERR_MIL_TRM_INTERNAL_ERROR
FX_ERR_LICENSE_MODULE

Synopsis

FXReturnCode fxMilTrmStopStofMessage (
FXMilTrmContextHandle handle,
int32 t frameNumber

)

9.3.3. Type Definitions

9.3.3.1. FXMilTrm ContextHandle
typedef uint32_t FXMilTrmContextHandle;

9.3.3.2. FXMilTrmMessageHandle
typedef uint32_t FXMilTrmMessageHandle;

9.3.3.3. FXMilTrmCallback

Description

This type definition forms the prototype for functions that can be registered as AS5643 Transmission callback
function. It will return information like a handle to the bus that triggered the callback, the user-registered user
data and a handle to the context that triggered the callback.

Parameters
handle Reference handle to the bus that triggered the callback.
(see fxCreateBusHandle)
userData User-provided data pointer that was specified when the callback was registered.
contextHandle Reference handle to the context that triggered the callback.
(see xMilTrmCreateContextHandle)
eventCodes Event codes from the transfer status. See User Callback Event Code Bits for more
details.
Synopsis
typedef void (*FXMilTrmCallback) (
FXBusHandle handle,
void* userData,
FXMilTrmContextHandle contextHandle,
uint32 t eventCodes

)

9.3.4. Structures
9.3.4.1. FXMilTrm ContextOption

Description
This structure can be used to specify options when opening an AS5643 Transmission Context.

Members

| optionId ID value of the option to set. For options please refer to Context Options.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 103

AS5643 Protocol APl Reference

value Value to set for the specified option.
Synopsis
typedef struct ({

uint32 t optionId;

uint32 t value;

} FXMilTrmContextOption;

9.3.4.2. FXMilTrmMessageOption

Description
This structure can be used to specify an option of AS5643 transmission. Available options depend on where
these items are used and will be listed in the documentation of the functions using this data type.

Members
optionId ID value of the option to set. For available options, please refer to Message Options.
value Value to set for the specified option.
Synopsis
typedef struct {
uint32 t optionId;
uint32 t value;

} FXMilTrmMessageOption;

9.3.4.3. FXBuffer

Description
This structure can be used to specify the location and size of a DMA-capable buffer.

Members
data Pointer to a DMA-capable buffer allocated by the user.
(see ixMemAlloc for allocating DMA-capable buffers)
size Size of data in bytes.
Synopsis
typedef struct {
void* data;
size t size;
} FXBuffer;

9.3.4.4. FXMilTrmMessage

Description
This structure can be used to represent an AS5643 message when its data is located in a single buffer.

Members

optionList Pointer to a user defined list of FXMilTrmMessageOption elements that together form
the options for the message to be transmitted. For available options and their default
values, please refer to Message Options. Options that are not specified will just use
default values.

listSize Specifies the number of items in the optionList.

data Pointer to a DMA-capable buffer allocated by the user. The buffer will be used as
message data including the VPC field but excluding the data CRC.
(see ixMemAlloc for allocating DMA-capable buffers)

dataSize Size of data in bytes.

Synopsis

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

AS5643 Protocol APl Reference

typedef struct

{

FXMilTrmMessageOption* optionList;
size t listSize;
void* data;

size t dataSize;

} FXMilTrmMessage;

9.3.4.5. FXMilTrm SplitMessage

Description
This structure can be used to represent an AS5643 message when its data is located in more than one data
buffer.
Members
optionList Pointer to a user defined list of FXMilTrmMessageOption elements that together form
the options for the message to be transmitted. For available options and their default
values, please refer to Message Options. Options that are not specified will just use
default values.
listSize Specifies the number of items in the optionList.
bufferList Orderd list of FXBuffer elements that together form the message data including VPC but
excluding CRC. If less than 5 buffers are needed then just set the size of the last
buffer(s) to zero.
Synopsis
typedef struct {
FXMilTrmMessageOption* optionList;
size t listSize;
FXBuffer bufferList[5];

} FXMilTrmSplitMessage;

9.3.4.6. FXMilTrm Strm Status

Description

This structure is used when xMilTrmStrmGetStatus function is called.

Members

status 1: Context has started by calling ixMilTrmStrmStart function. Context may be in idling if
the end of transmit queue has been reached.
0: Context has not started or has been stopped by calling ixMilTrmStrmStop function.
The context can be started/resumed by calling xMilTrmStrmStart function.

Synopsis

typedef struct {

uint32 t

status;

} FXMilTrmStrmStatus;

9.3.4.7. FXMilTrmMessageStatus

Description

This structure is used when xXMilTrmGetMessageStatus function is called.

Members

status

1: Message is active and is being transmitted repeatedly.
0: Message transmission has stopped.

contextHandle

Context handle to which the message belongs.

Synopsis

typedef struct {

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 105

AS5643 Protocol APl Reference

uint32 t

status;

FXMilTrmContextHandle contextHandle;

} FXMilTrmMessageStatus;

9.3.4.8. FXMilStofMessage

Description

This structure defines complete contents of an AS5643 STOF message as defined in the SAE-AS5643

specification.

Members
ccBranchStatus The CC Status Word (Long Packed Boolean) shall indicate the failure state
of each of the CCs.
networkBusMode The Network Bus Mode Word (Long Packed Boolean) shall indicate the
current mode of operation for the CC Bus as defined below. One of the bits
shall be set to one to indicate the current mode. These bits are mutually
exclusive. If multiple bits are set, the Remote Nodes shall disregard this
erroneous setting and continue to operate in the previous mode of
operation. Any mode word setting other than those shown below shall be
considered illegal and invalid. Use of the user defined bit assignments to
accommodate different organizations should be defined in the network
profile slash sheet for the target application.
Network Bus Mode Bits:
e |SB
e Bit 31: Start-up/Initialization
¢ Bit 30: Normal
e Bit 29: CC-In-Test (STOF messages may or may not be present
depending upon which tests are being performed
¢ Bit 28: Reserved (Shall be initialized to zero)
¢ Bit 27: Program Upload
¢ Bit 26: In Test Mode — Read Only
e Bit 25: In Test Mode — Read/Write
¢ Bits 24 — 16: Reserved (Shall be initialized to zero (0))
¢ Bits 15 — 0: User Defined (as defined in the network profile slash sheet
for the target application) Protocol Functions 78 Copyright 2008,
DapTechnology, Version 11/28/2008
e MSB
vehicleState The Vehicle State Word (Long Packed Boolean) in the STOF message is
used to indicate the current state of the vehicle as defined in the network
profile slash sheet for the target application.
vehicleTime The Vehicle Time shall be a 32-bit Unsigned Long Integer denoting time as
determined by the supported system. Format and use of Vehicle Time shall
be defined in the network profile slash sheet for the target application.
quadlet4 User Defined
quadlet5 User Defined
quadlet6 User Defined
quadlet? User Defined
quadlet$ User Defined
verticalParityCheck Vertical Parity Check field. Will only be used if automatic VPC calculation
is disabled.

Synopsis

typedef struct {
uint32 t ccBranchStatus;
uint32 t networkBusMode;

106

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

AS5643 Protocol APl Reference

uint32 t vehicleState;

uint32 t vehicleTime;

uint32 t quadletd;

uint32 t quadlet5;

uint32 t quadlet6;

uint32 t quadlet7;

uint32 t quadlet8;

uint32 t verticalParityCheck;

} FXMilStofMessage;

9.3.5. Constants

9.3.5.1. Error Codes
The following values may be returned by AS5643

Transmit functions.

FX_ ERR_MIL_TRM_INVALID_CONTEXT MODE

FX ERR_MIL_TRM_INVALID_CONTEXT _HANDLE

FX ERR_MIL_TRM_NO_AVAILABLE_CONTEXT

FX ERR_MIL_TRM_INTERNAL_ERROR

FX ERR_MIL_TRM_STRM_DATA_FORMAT ERROR

FX ERR_MIL_TRM_INVALID_MESSAGE_HANDLE

FX ERR_MIL_TRM_OUT OF_INTERNAL_RESOURCE

FX_ ERR_MIL_TRM_INVALID_BUFFER_ADDRE

SS

FX ERR_MIL_TRM_MSG_DATA_NOT SET

FX ERR_MIL_TRM_MSG_EXCEED_MAX PAYLOAD_SIZE

FX ERR_MIL_TRM_STRM_EMPTY

FX ERR_MIL_TRM_RPT _MESSAGE_DATA_MI

SMATCH

FX ERR_MIL_TRM_CONTEXT ALREADY_STARTED

FX ERR_MIL_TRM_CONTEXT ALREADY_STOPPED

FX ERR_MIL_TRM_STOF_CONTEXT ALREADY_EXSTS

9.3.5.2. Context Options

The following message options are available:

FX_MIL_TRM_CONTEXT_OPT_MODE

This option shall be used to specify the transmission mode
for the context to be opened. Please refer to Context
Modes for more information.

Default: This option shall not be left out.

FX MIL_TRM_CONTEXT OPT JITTER_RANG
E

This option can be used to set the range of the jitter on the
transmission timing that is optionally applied to each
packet transmitted by this context. For available jitter
ranges, please refer to Jitter Ranges.

Default: FX MIL_TRM_JITTER_RANGE_0

FX_MIL_TRM_CONTEXT OPT JITTER_DIREC
TION

This option can be used to set the range of the jitter on the
transmission timing that is optionally applied to each
packet transmitted by this context. For available jitter
ranges, please refer to Jitter Dirtections.

Default: FX MIL_TRM_JITTER_RANGE_O0

FX_MIL_TRM_CONTEXT_OPT_FRAME_SKIP_
COUNT

For Repeating Messages Mode Only. This option
specifies a number of frames to skip when a message gets
transmitted. For example, specifying 0 (zero) makes a

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

107

AS5643 Protocol APl Reference

message gets transmitted at every frame while specifying 2
(two) makes a message gets transmitted at every 3 frames.
Valid range of value is from 0 (zero) to 10 (inclusiwe).
Default: 0

9.3.5.3. Context Modes

The following transmission modes are available:

FX MIL_TRM_MODE_STREAMING | This mode allows the user to write large or small sets of messages to
the FireStack and have them transmitted automatically on the
specified frame offset times. The provided data needs to contain so
called frame separator elements to indicate the following message
needs to be transmitted in the next frame.

(please refer to Streaming Messages Mode for more information)

FX MIL_TRM_MODE_REPEATING |This mode allows to user to setup a message that will automatically
be transmitted each frame by the FireStack. The user will have a
pointer to the actual data of the message and is allowed to
manipulate the data at any point in time without having to worry about
its timed transmission. Very useful for AS5643 status messages.
(please refer to Repeating Messages Mode for more information)

FX MIL_TRM_MODE_SINGLE This mode allows the user to simply transmit a message as soon as
possible but exactly at the specified frame offset time. Sewveral
messages may be handed to the FireStack for immediate
transmission and the FireStack will then take care of the actual
moment of transmission.

(please refer to Single Message Mode for more information)

FX MIL_TRM_MODE_STOF This mode allows the user to control transmission of STOF
messages.
(please refer to STOF Message Mode for more information)

9.3.5.4. Jitter Ranges

The following jitter ranges are available:

FX MIL_TRM_JITTER_RANGE_O This jitter range setting will result in a fixed jitter value of 0 micro
seconds (no jitter).

FX MIL_TRM_JITTER_RANGE_1 This jiter range setting will result in a fixed jitter value of 1 micro
second. The jitter value could be only positive or only negative or
either way depending on the jitter direction setting.

FX MIL_TRM_JITTER_RANGE_3 This jitter range setting will result in a random jitter value for each
packet that has its jitter option enabled with a value between 1 and 3
micro seconds. The jitter value could be only positive or only negative
or either way depending on the jitter direction setting.

FX MIL_TRM_JITTER_RANGE_7 This jitter range setting will result in a random jitter value for each
packet that has its jitter option enabled with a value between 1 and 7
micro seconds. The jitter value could be only positive or only negative
or either way depending on the jitter direction setting.

FX MIL_TRM_JITTER_RANGE_15 This jitter range setting will result in a random jitter value for each
packet that has its jitter option enabled with a value between 1 and
15 micro seconds. The jitter value could be only positive or only
negative or either way depending on the jitter direction setting.

FX MIL_TRM_JITTER_RANGE_31 This jitter range setting will result in a random jitter value for each
packet that has its jitter option enabled with a value between 1 and

108 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

AS5643 Protocol APl Reference

31 micro seconds. The jitter value could be only positive or only
negative or either way depending on the jitter direction setting.

FX_ MIL_TRM_JITTER_RANGE_63

This jitter range setting will result in a random jitter value for each
packet that has its jitter option enabled with a value between 1 and
63 micro seconds. The jitter value could be only positive or only
negative or either way depending on the jitter direction setting.

FX_MIL_TRM_JITTER_RANGE_127

This jitter range setting will result in a random jitter value for each
packet that has its jitter option enabled with a value between 1 and
127 micro seconds. The jitter value could be only positive or only
negative or either way depending on the jitter direction setting.

9.3.5.5. Jitter Directions

The following jitter directions are available:

FX MIL_TRM_JITTER_DIRECTION_B
OTH

This jitter direction setting will result in randomly subtracting or
adding a jitter value within the range defined by the jitter range
setting.

FX_ MIL_TRM_JITTER_DIRECTION_P
(o)

This jitter direction setting will result in only adding a jitter value within
the range defined by the jitter range setting.

FX_ MIL_TRM_JITTER_DIRECTION_N
EG

This jitter direction setting will result in only subtracting a jitter value
within the range defined by the jitter range setting.

9.3.5.6. Message Options

The following message options are available:

FX MIL_TRM_OPT_SPEED

This option can be used to set the transmission speed of
the message. Supported options are (depending on
harwdare capabilities):

e FX_ SPEED_100

e FX_ SPEED_200

e FX_ SPEED_400

e FX_ SPEED_800

e FX SPEED_1600

e FX SPEED_3200

Default: FX SPEED_400

FX_MIL_TRM_OPT CHANNEL

This option can be used to set the 1394 channel the
message needs to transmitted on. Value needs to be
positve and smaller than 64.

Default: 0

FX MIL_TRM_OPT OFFSETTIME

This option can be used to set the AS5643 transmit offset
time relative to start of frame. Values need to be positive
and smaller than the frame length minus the sync margin.
Please refer to AS5643 Frame Timing for more information
about which value to use here.

Default: 0

FX MIL_TRM_OPT _JITTER_MODE

This option can be used to apply semi random jitter to the
transmission time. Please refer to Jitter Modes for more
information.

FX MIL_TRM_OPT_AUTOVPC

This option can be used to specify whether the hardware
needs to automatically populate the VPC field. See
supported options in Auto VPC Modes.

Default: FX MIL_TRM_AUTOVPC_ENABLE_VPC (see
Auto VPC Modes)

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

109

AS5643 Protocol APl Reference

FX_ MIL_TRM_OPT ISFRAMESEPARATOR

This option can be used to specify that a message is

actually just an indication for start of the next frame. This

option only makes sense for messages transmitted in

Streaming Message Mode. If this option is enabled then no

message is transmitted but hardware just waits for the start

of frame. Supported options are:

¢ O - disabled meaning it is a regular message

¢ 1 - enabled, meaning it is not a message but a wait start
of frame item

Default: 0

9.3.5.7. Jitter Modes

The following jitter modes are available for the
Options.

FX'MIL_TRM_OPT_JITTER_MODE option defined in Message

FX_MIL_TRM_JITTER_DISABLE

Jitter will not be applied to the transmission time of the
message.

FX_MIL_TRM_JITTER_ENABLE

Jitter will be applied to the transmission time of the packet.
The semi random jitter value will be determined based on
thejitter settings of the context this message is part of.

9.3.5.8. Auto VPC Modes
The following Auto VPC modes are available for FX_MIL_TRM_OPT_AUTOVPC option defined in Message

Options.

FX MIL TRM AUTOVPC DISABLE VPC

No VPC insertion

FX MIL TRM AUTOVPC ENABLE VPC

Calculate correct VPC and insert as last data quadlet

FX_MIL_TRM_AUTOVPC_INCORRECT VPC

Calculate incorrect (inverted) VPC and insert as last data
quadlet

9.3.5.9. User Callback Event Code Bits

Definitions for possible event codes used in the User Callback Function. For the Streaming mode, user
callbacks can be enabled/disabled at any packet; Transmit events will be logical OR'ed between callbacks.

Define

Value Description

FX MIL_TRM_EVENT_TRANSMIT COMPLETE |0x00000001 At least one of packet

transmissions have been
completed without any error.

FX MIL_TRM_EVENT_TRANSMIT_ERROR

0x00010000 At least one of packet
transmissions have been
completed with an error.

FX MIL_TRM_EVENT NOT_TRANSMIT

0x00100000 At least one of packet
transmissions were skipped.

9.3.6. Data Formats
9.3.6.1. AS5643 Regeneration Format

This section describes one of the data formats used in iXMilTrmStrmWritelmmediate().

31]30] 29] 28] 27| 26] 25] 24| 23] 22] 21] 20] 19] 18] 17] 16] 15] 14] 13] 12[11][10] 9 [8 [7|6 [5[4 [3] 2] 1] 0

ltem Type

Data (1 ~ N quadlets)

Item Type (32 bits)
1: Frame Separator

110

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

AS5643 Protocol APl Reference

3: Stream Packet

Item Type 1 - Frame Separator
31]30] 29] 28] 27] 26] 25] 24| 23] 22] 21| 20] 19] 18] 17] 16] 15[14[13] 12 11]10] 9 [8 [7|6 5] 4| 3] 2] 1] 0
1
Resened

Item Type 3 - Stream Packet
31]30] 29[28] 27] 26] 25] 24| 23] 22] 21| 20] 19] 18] 17] 16] 15[14] 13[12[11]10] 9 [8 [7| 6 [5] 4 [3] 2] 1] 0
3
Offset
Speed
Payload Size
Header
Payload Data

Offset: (32 bits)
Offset from the start of a frame (microseconds)
Speed: (32 bits)
Speed code 1: 100 Mbps
2: 200 Mbps
3: 400 Mbps
4: 800 Mbps
Payload Size: (32 bits)
Data Payload size in quadlets excluding the header
Header: (32 bits)
Header part of IEEE1394 stream packet
Payload Data: (32 bits) * Payload Size
Data Payload part of IEEE1394 stream packet

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 111

1394 APl Reference

Chapter 10. 1394 API Reference

10.1. Serial Bus Management

The serial bus management module combines several tasks related to serial bus management. This module
can be turned on or off by setting the corresponding Feature. The exact functionality can be controlled by
using the SBM Capabilities setting when opening the bus using fxCreateBusHandle().

10.1.1. Settings

10.1.1.1. SBM Capabilities

The following setting can be used as settingld in an FXSetting structure passed to fxCreateBusHandle() to
control which SBM capabilities will be enabled for the bus that is being opened. Please make sure to also
enable the Serial Bus Management module itself.

FX SETTING_ID_SBM CAPABILITIES

The following settings can be or-ed together to form the FXSetting value field:

FX_SBM_TRANSACTION_ CAPABLE
Perform the duties of a Transaction capable node

FX_SBM_ISOCHRONOUS_CAPABLE
Perform the duties of an Isochronous capable node

FX_SBM_CYCLE_MASTER CAPABLE
Perform the duties of a Cycle Master capable node

FX_SBM IRM CAPABLE
Perform the duties of an IRM capable node

The following features are currently reserved:
FX_SBM_BUS_MANAGER CAPABLE

10.1.2. Functions
10.1.2.1. fxSetBusResetCallback

Description

This function can be used to register a single callback function that will be called each time a bus reset event

occurs.

Parameters

busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)

callback The user-defined function that will be called when a bus reset
event occurs. There is only one function that can be
registered: Calling this function with another callback
function will replace the current one, and with 0 will disable
the callback.

userData This is a convenience feature that allows caller to specify
arbitrary user data that fits in
a variable of type void*. FireStack will not touch what is
provided here. The exact value
provided will be handed back to the user when the callback

112 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

1394 APl Reference

function is called.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE

Synopsis

FXReturnCode fxSetBusResetCallback(
FXBusHandle busHandle,
FXBusResetCallback callback,
void* userData

)
10.1.2.2. fxGetBusGeneration

Description

This function can be used to get the current bus generation number. The bus generation number increments
each time a bus reset occurs on the bus. All functionality that makes use of node IDs uses the bus
generation number to determine if the node IDs used are still valid. This is very important as node IDs are
dynamic and may change every time a bus reset occurs.

It is recommended that the user application calls this function once each time a bus reset occurs and then
remembers the value until the next bus reset. Many functions take this value as an input and if the user
passes an old generation number those functions will fail with a return code indicating that a bus reset
occurred.

Whenewer a bus reset occurs it is up to the user application to call this function and determine the new node

IDs.
Parameters
busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)
generation Will return the current bus generation number.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER
FX_ERR_INVALID_LOCAL_NODE_ID

Synopsis

FXReturnCode fxGetBusGeneration (
FXBusHandle handle,
uint32 t* generation

)
10.1.2.3. I xGetNumberOfNodesOnBus

Description

This function can be used to get the number of nodes on the bus. As the topology may change after every
bus reset, a bus generation number needs to be passed to this function to ensure user application is aware of
the latest bus reset that occurred on the bus. The bus generation can be determined by making a function
call to xGetBusGeneration().

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 113

1394 APl Reference

Parameters

busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)

generation Set this wvalue to the current bus generation number. (see
fxGetBusGeneration)

numNodes User allocated buffer that will return the number of nodes on
the bus.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER

Synopsis

FXReturnCode fxGetNumberOfNodesOnBus (
FXBusHandle handle,
uint32 t generation,
Uint32 t* numNodes

)

10.1.2.4. fxGetLocalNodeld

Description

This function can be used to get the Physical ID of the local Node on a bus we are connected to. As node IDs
may change after every bus reset, a bus generation number needs to be passed to this function to ensure
user application is aware of the latest bus reset that occurred on the bus. The bus generation can be
determined by making a function call to ixGetBusGeneration().

Parameters

busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)

generation Set this value to the current bus generation number. (see
fxGetBusGeneration)

nodeId Will return the Physical ID of the local Node.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER
FX_ERR_INVALID_LOCAL_NODE_ID

Synopsis

FXReturnCode fxGetLocalNodeId (
FXBusHandle handle,
uint32 t generation,
int32 t* nodeld

)

10.1.2.5. IxGetMaxSpeedToNode

Description
This function can be used to get the highest possible packet speed support by all nodes in between the local
node and the specified node ID. As node IDs may change after every bus reset, a bus generation number

114 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

1394 APl Reference

needs to be passed to this function to ensure user application is aware of the latest bus reset that occurred
on the bus. The bus generation can be determined by making a function call to fxGetBusGeneration().

Parameters

busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)

generation Set this value to the current bus generation number. (see
fxGetBusGeneration)

nodeId Will return the Physical ID of the local Node.

pathSpeed User-allocated buffer that will be used to write the maximum
speed to.

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_FIRESTACK_NOT_INITIALIZED
FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER
FX_ERR_BUS_RESET_DETECT
FX_ERR_GENERAL

Synopsis

FXReturnCode fxGetMaxSpeedToNode (
FXBusHandle busHandle,

uint32 t

uint32 t

uint32 tx*
)

10.1.3. Type Definitions

generation,
nodeId,
pathSpeed

10.1.3.1. FXBusResetCallback

Description

Users can define a function of this type and register it using the function ixSetBusResetCallback. The user
defined function will then be called each time a bus reset event occurs.

Parameters
busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)
userData User-provided data pointer that was specified when the callback
was registered.
Synopsis
typedef void (*FXBusResetCallback) {
FXBusHandle busHandle,
void* userData

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 115

1394 APl Reference

10.2. Inbound Transactions

Inbound Transactions are defined in two separated methods: Map Local Memory and Transaction Handler.

Map Local Memory

The user can "map" a chunk of local memory to a specific address space which is defined by the IEEE1394

standard. When the stack receives an asynchronous request packet from a remote device and finds that the
address and size of the packet fit one of mapped memory regions, it will automatically perform the requested
operation (read, write or lock), if permitted, and will send a response packet back to the requester. The user

will be notified by the notification callback function when the transaction completes.

Transaction Handler

Similar to the Map Local Memory above except that a user will "register" a specific address space instead of
"mapping" local memory. When the stack receives a request packet, which has the same criteria mentioned
abowe, it will call the user-specified handler callback function. The user can then perform any operation within
the callback function. Upon returning from the handler callback, the FireStack may transmit a response
packet. The notification callback function will be called after completion of the response process.

10.2.1. Functions

10.2.1.1. Memory Mapping Functions
10.2.1.1.1 fxMapLocalMemory
Description

This function creates and allocates a handle to the specified memory mapping information. All incoming
packets with the address within the specified range will be automatically acknowledged and responded by the

stack.

Parameters

busHandle Reference handle to the bus to control. (see fxCreateBusHandle)

options Pointer to FXMappingOptions structure that specifies memory
regions, size, etc.

localMemory The start address of the DMA-capable buffer which will be

mapped to the IEEE1394 memory space specified by the region
parameter above.
(See fxMemAlloc for allocating DMA-capable buffers)

mappingHandle [Filled with a new, valid mapping handle if no error is
reported.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER
FX_ERR_INVALID_ADDRESS
FX_ERR_IBD_TRN_MAX_MAPPINGS_REACHED
FX_ERR_IBD_TRN_MAPPING_OVERLAPPING
FX_ERR_INTERNAL_ERROR
FX_ERR_LICENSE_MODULE
FX_ERR_LICENSE_EXPIRED
FX_ERR_FIRESTACK_DEMO_TIMEOUT
FX_ERR_INVALID_DATA_ADDRESS
FX_ERR_INVALID_DATA_SIZE
FX_ERR_IBD_TRN_INVLIAD_LOCAL_MEM_ADDRESS

Synopsis

116 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

1394 APl Reference

FXReturnCode fxMapLocalMemory (

FXBusHandle busHandle,
const FXMappingOptions* options,
void* localMemory,
FXMappingHandle* mappingHandle

)
10.2.1.1.2 fxMapRequestHandler

Description

This function creates and allocates a handle to the specified memory mapping information. The user-specified
handler will be called when a matching incoming request is received. After returning from the handler callback,
the FireStack may transmit a response packet. See FXTransactionData, FXRequestHandlerCallback and
FXRequestNotificationCallback.for additional information.

Parameters

busHandle Reference handle to the bus to control. (see
fxCreateBusHandle)

options Pointer to FXMappingOptions structure.

handlerCallback User-specified callback function that will be called upon a
reception of a request packet with address and size are
within the memory region. See also
FXRequestHandlerCallback.

handlerUserData Pointer to a user-specified data. The pointer will be
carried to the user callback function specified above. See
also FXRequestHandlerCallback.

mappingHandle Filled with a new, valid mapping handle if no error is
reported.

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER
FX_ERR_INVALID_ADDRESS
FX_ERR_IBD_TRN_MAX_MAPPINGS_REACHED
FX_ERR_IBD_TRN_MAPPING_OVERLAPPING
FX_ERR_INTERNAL_ERROR
FX_ERR_LICENSE_MODULE
FX_ERR_LICENSE_EXPIRED
FX_ERR_FIRESTACK_DEMO_TIMEOUT
FX_ERR_INVALID_DATA_ADDRESS
FX_ERR_INVALID_DATA_SIZE

Synopsis

FXReturnCode fxMapRequestHandler (
FXBusHandle busHandle,
const FXMemoryOptions* options,
FXRequestHandlerCallback handlerCallback,
void* handlerUserData,
FXMappingHandle* mappingHandle

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 117

1394 APl Reference

10.2.1.1.3 fxClearMemoryMapping

Description
Clears the specified memory mapping region information and deletes the entry.

Parameters

mappingHandle [Reference handle to the mapping data. (see fxMapLocalMemory and

fxMapRequestHandler)

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_IBD_TRN_INVALID_MAPPING_HANDLE
FX_ERR_IBD_TRN_INTERNAL_ERROR

Synopsis

FXReturnCode fxClearMemoryMapping (
FXMappingHandle mappingHandle

)

10.2.1.2. Local Memory Access Functions
10.2.1.2.1 fxReadLocalMemory

Description
This function can be used to read from local IEEE-1394 memory space. Data returned is the same as would
be returned by a remote node performing a read transaction on the local node.

Parameters

busHandle Reference handle to the bus to control. (see
fxCreateBusHandle)

address The start address of the IEEE1394 memory space from which
this transaction intends to read.

buffer User-specified buffer address. Data will be copied to this
buffer.

size Pointer a variable that specifies the maximum size of the
desired receive data size. The buffer specified above must
have enough storage space. An actual data size of the read
operation will be returned to the specified variable.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER
FX_ERR_INVALID_ADDRESS
FX_ERR_OBD_TRN_RCV_RESP_ADDRESS
FX_ERR_OBD_TRN_RCV_RESP_CONFLICT
FX_ERR_OBD_TRN_RCV_RESP_DATA
FX_ERR_OBD_TRN_RCV_RESP_TYPE

Synopsis

FXReturnCode fxReadLocalMemory (
FXBusHandle handle,
const FXAddress64* address,

118

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

1394 APl Reference

void*
size t*
)
10.2.1.2.2 xWriteLocalMemory

Description
This function can be us

buffer,
size

ed to write to local IEEE-1394 memory space. The result is the same as when a

remote node performs a write transaction on the local node.

Parameters

busHandle Reference handle to the bus to control. (see
fxCreateBusHandle)

address The start address of the IEEE1394 memory space from which
this transaction intends to read.

data User-specified data. Data will be copied to destination
address.

size Specify the maximum size of the desired receive data size.
The buffer specified above must have enough storage space.

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER
FX_ERR_INVALID_ADDRESS
FX_ERR_OBD_TRN_RCV_RESP_ADDRESS
FX_ERR_OBD_TRN_RCV_RESP_CONFLICT
FX_ERR_OBD_TRN_RCV_RESP_DATA
FX_ERR_OBD_TRN_RCV_RESP_TYPE

Synopsis

FXReturnCode fxWriteLocalMemory (
FXBusHandle handle,
const FXAddress64* address,
void* data,
size t size

)
10.2.1.2.3 fxLockLocalMemory

Description

This function can be used to perform a lock operation on local IEEE-1394 memory space. The result is the

same as when a remote node performs a lock transaction on the local node.

Parameters

handle Reference handle to the bus to control. (see
fxCreateBusHandle)

address The start address of the IEEE1394 memory space from which
this transaction intends to read.

lockOperation Lock operation to perform on destination address

buffer User-specified data.

size Pointer a variable that specifies the maximum size of the
desired receive data size. The buffer specified above must

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

119

1394 APl Reference

10.2.2. Type Definitions

have enough storage space. An actual data size of the lock
operation will be returned to the specified variable.

Return Codes
This function returns

zero or greater upon success. A negative return value indicates an error. Please use the

function fxGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER
FX_ERR_INVALID_ADDRESS
FX_ERR_OBD_TRN_RCV_RESP_ADDRESS
FX_ERR_OBD_TRN_RCV_RESP_CONFLICT
FX_ERR_OBD_TRN_RCV_RESP_DATA
FX_ERR_OBD_TRN_RCV_RESP_TYPE

Synopsis

FXReturnCode fxLockLocalMemory (
FXBusHandle handle,
const FXAddresso64* address,
uint32 t lockOperation,
void* buffer,
size t* size

)

10.2.2.1. FXRequestHandlerCallback

Description

This function definition is used to specify a callback function that will be called when the stack receives an
incoming request packet with address and size which are within a memory region created by
fxMapRequestHandler.

A return value of this

user function is very important and must be one of Response Codes.

If the transaction response needs to carry data from this callback function then a valid data pointer allocated
with fixMemAlloc() needs to be set in the FXTransactionData structure as well as the corresponding size. The
user application shall not free that data until the response has been completed as indicated by calling
FXRequestNotificationCallback.

Parameters
busHandle Reference handle to the bus to control. (see fxCreateBusHandle)
userData Pointer to the data specified in fxMapRequestHandler.
mappingHandle [Reference handle to the mapping data. (see fxMapRequestHandler)
transactionDat|Pointer to FXTransactionData. The stack will fill this
a structure with the packet data it has received. The callback
implementation needs to set the data member for read and lock
transactions.
Synopsis
typedef int32 t (*FXRequestHandlerCallback) (
FXBusHandle busHandle,
void* userData,
FXMappingHandle mappingHandle,
FXTransactionData* transactionData

120

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

1394 APl Reference

10.2.2.2. FXRequestNotificationCallback

Description
This function definition is used to specify a callback function that will be called when an inbound transaction
completes.
Parameters
busHandle Reference handle to the bus to control. (see fxCreateBusHandle)
userData Pointer to the data specified in FXMappingOptions.
mappingHandle |Reference handle to the mapping data. (see
fxMapTransactionHandler)
result For the mappingHandle created by fxMapLocalMemory, this will be
a response code the stack has automatically sent to; for the
mapping created by fxMapRequestHandler, this will be the value
of whichFXRequestHandlerCallback returns or
FX IBD TRANSACTION BUS RESET if bus reset events are detected
before a response packet is transmitted.
Synopsis
typedef int32 t (*FXRequestNotificationCallback) (
FXBusHandle busHandle,
void* userData,
FXMappingHandle mappingHandle,
int32 t result

)7

10.2.3. Structures

10.2.3.1. FXTransactionData

Description

This structure defines data members that will be used to hold a request packet that has been received by the
stack. The structure is also used to carry data with user-allocated memory buffer if applicable.

Members

generation The current bus generation number. (see fxGetBusGeneration)

sourcelD Node ID of the IEEE1394 device who has initiated sending a
request

transactionLabel |Automatically assigned by the FireStack. Each transaction has
a unique label.

accessType Indicates transaction mode (read, write or lock). For
definition, refer to Transaction Types.

localAddress 48-bit address of memory space specified in IEEE1394 standard

data When the handler callback (FXRequestHandlerCallback)is
called, this member points to the stack internal receive
buffer that contains received packet data. Before returning
from the handler callback for read and lock transactions,
allocate DMA-capable memory buffer and assign the data
variable and set the corresponding size. The DMA memory must
not be freed until the response process is complete. This is
signaled by the notification event
(FXRequestNotificationCallback) .

size Received data size in bytes. Also used to specify the size of
DMA-capable memory allocated by the user.

lockOperation Indicates the type of the lock operation (compare swap,

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 121

1394 APl Reference

mask swap, etc) if the accessType is the lock transaction.

Synopsis

typedef struct {
uint32 t sourcelD;
uint32 t accessType;
FXAddress64 localAddress;
voidx* data;
size t size;
uint32 t lockOperation;

} FXTransactionData;

10.2.3.2. FXMappingOptions

Description
This structure defines the components of a memory region along with permitted access mode and a user-
specified callback function which will be called when the stack completes the transaction.

Members
startAddress 48-bit address of memory space specified in IEEE1394 standard
size Memory size in bytes

accessTypeMask |Specify access mode (read, write or lock) that are allowed for
the memory region. For definition, refer to Transaction Types.

callback User-specified callback function that will be called upon a
completion of a transaction with address and size are within
the memory region.

userData Pointer to a user-specified data. The pointer will be carried
to user callback functions. See also
FXRequestNotificationCallback.

Synopsis

typedef struct {
FXAddress64 startAddress;
size t size;
uint32 t accessTypeMask;
FXRequestNotificationCallback callback;
void* userData;

} FXMappingOptions;

10.2.4. Constants
10.2.4.1. Error Codes

The following values may be returned by Inbound Transactions functions.

FX_ ERR_IBD_TRN_INVALID_MAPPING_HANDLE
FX_ ERR_IBD_TRN_MAX MAPPINGS_REACHED
FX_ ERR_IBD_TRN_MAPPING_OVERLAPPING
FX_ ERR_IBD_TRN_INTERNAL_ERROR

10.2.4.2. Response Codes

A return value of FXRequestHandlerCallback must be one of the following codes except

FX IBD_TRANSACTION_BUS_RESET. The return value will inform the FireStack what to do when it attempts
transmitting a response packet. Returning FX IBD_TRANSACTION_ABORT will result in not transmitting the
response packet. The return value will be copied to the 'result' parameter of FXRequestNotificationCallback
after the response process is completed except that if bus reset events are detected during the process, the
result parameter will be FX IBD_TRANSACTION_BUS_RESET (the response packet was NOT transmitted).

122

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

1394 APl Reference

FX IBD_TRANSACTION_ABORT

FX IBD_TRANSACTION_BUS_RESET

FX IBD TRANSACTION NORMAL COMPLETE
FX IBD TRANSACTION DATA ERROR

FX IBD TRANSACTION TYPE ERROR

FX IBD TRANSACTION ADDRESS ERROR
FX IBD_TRANSACTION_CONFLICT ERROR

-1

A WON-20

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

123

1394 APl Reference

10.3. Outbound Transactions

This module can be used to perform memory transactions on remote nodes. Available memory transactions
are read, write and lock.

For memory read and write transactions a block request will be used when more than 4 bytes are requested
and a quadlet request is performed when exactly 4 bytes are requested. It is up to the user to determine if the
target node supports block transactions or not.

When a memory transaction is initiated FireStack will determine the maximum speed to the destination node
by performing the needed PHY remote accesses. FireStack will remember and reuse already determined
speeds until the next bus reset.

As each bus reset potentially changes the node ID assignments FireStack maintains a generation number
that increments each time a bus reset occurs. All information related to node IDs and topology is only valid
for the duration of a single bus generation. Therefore, before the user can make use of any of the functions for
retrieving topology information or functions referring nodelDs the user must request current bus generation
from FireStack by calling fxGetBusGeneration(). It is recommended to register a bus reset callback and use
that as a trigger to update the generation number and topology information.

Outbound Transactions can be used in the following ways with respect to result indication:

¢ Blocking Mode: After transmitting the specified request packet, the FireStack Transaction functions will
not return unless it received a response packet/code or waited for the specified amount of time (see
FXTransactionOptions). Blocking mode is entered when no transaction handle parameter is provided when
calling one of the transaction functions. The callback function member in FXTransactionOptions will be
ignored in this mode.

¢ Non-Blocking Mode with callback: After transmitting the specified request packet, the FireStack
Transaction functions will return immediately. The result of the transaction will be returned in the callback
function which will be called by the FireStack upon a completion of the transaction. This mode is entered
when both a transaction handle parameter and a callback parameter are passed when calling one of the
transaction functions. The user does not have to clear the transaction.

¢ Non-blocking mode without callback: After transmitting the specified request packet, the FireStack
Transaction functions will return immediately. The status of the transaction needs to polled by the user.
Once the status indicates the transaction completed, potentially with an error, the user is required to clear
the transaction.

If certain requirements are met FireStack will perform Outbound Transactions in zero-copy mode otherwise
stack will copy data to non-DMA memory.

e Zero-copy read transactions will only be performed in non-blocking mode with callback if the user specifies
a zero pointer as buffer for the received data. FireStack will hand a pointer to the actual receive buffer to the
user when calling the registered callback. The user is free to use this buffer during callback execution. As
soon as the callback returns FireStack will reuse the buffer for reception of new packets.

When the read transaction is performed in any other way FireStack will copy the received data to the
specified memory location.

¢ Write transactions are always performed in a zero-copy fashion. Therefore, the user needs to pass a DMA-
capable memory buffer as data. The user should not free or reuse the memory buffer during the duration of
the transaction. As soon as the transaction finishes the user retrieves control of the memory buffer.

¢ Lock transactions are never performed in a zero-copy fashion as the inwlved data size is relatively small.

10.3.1. Functions

10.3.1.1. fxReadTransaction

Description
This function sends a read request packet to the specified destination node and waits to receive a response
packet.

124 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

1394 APl Reference

Parameters

busHandle Reference handle to the bus to control. (see
fxCreateBusHandle)

generation Set this wvalue to the current bus generation number. (see
fxGetBusGeneration)

destNode Node ID of destination device.

offset The start address of the IEEE1394 memory space of the
destination node from which this transaction intends to read.

buffer User-specified buffer address. If set, data on a response
packet will be copied to this buffer. For non-blocking mode
buffer may be set to zero to operate in zero-copy mode. This
case a pointer directly into the reception buffer will be
passed to the user upon transaction completion.

size Specify the maximum size of the desired receive data size.
The buffer specified above must have enough storage space.

options Pointer to FXTransactionOptions.

transactionHand [Filled with a new, valid transaction handle if no error is

le reported. For block mode, specify zero as pointer to a
handle.

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER
FX_ERR_INVALID_ADDRESS
FX_ERR_OBD_TRN_OPERATIONTIMEOUT
FX_ERR_INVALID_LOCAL_NODE_ID
FX_ERR_BUS_RESET_DETECT
FX_ERR_INTERNAL_ERROR
FX_ERR_LICENSE_MODULE
FX_ERR_LICENSE_EXPIRED
FX_ERR_FIRESTACK_DEMO_TIMEOUT
FX_ERR_OBD_TRN_RCV_RESP_CONFLICT
FX_ERR_OBD_TRN_RCV_RESP_DATA
FX_ERR_OBD_TRN_RCV_RESP_TYPE
FX_ERR_OBD_TRN_RCV_RESP_ADDRESS
FX_ERR_OBD_TRN_MISSING_ACK
FX_ERR_OBD_TRN_RETRY_LIMIT_EXCEED

Synopsis
FXReturnCode fxReadTransaction (
FXBusHandle busHandle,
uint32 t generation,
uint32 t destNode,
const FXAddress64* offset,
void* buffer,
size t size,
const FXTransactionOptions* options,
FXTransactionHandle* transactionHandle

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

125

1394 APl Reference

10.3.1.2. IxWriteTransaction

Description

This function sends a write request packet to the specified destination node and waits to receive a response

packet.

Parameters

busHandle Reference handle to the bus to control. (see
fxCreateBusHandle)

generation Set this wvalue to the current bus generation number. (see
fxGetBusGeneration)

destNode Node ID of destination device.

offset The start address of the IEEE1394 memory space of the
destination node to which this transaction intends to write.

buffer User-specified buffer address. The buffer needs to be
allocated with fxMemAlloc() .

size Specify the size of data this function writes.

options Pointer to FXTransactionOptions

transactionHandl|Filled with a new, valid transaction handle if no error is

e reported. For block mode, specify zero as pointer to a
handle.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_ADDRESS
FX_ERR_OBD_TRN_OPERATIONTIMEOUT
FX_ERR_INVALID_LOCAL_NODE_ID
FX_ERR_BUS_RESET_DETECT
FX_ERR_INTERNAL_ERROR
FX_ERR_LICENSE_MODULE
FX_ERR_LICENSE_EXPIRED
FX_ERR_FIRESTACK_DEMO_TIMEOUT
FX_ERR_OBD_TRN_INVALID_BUFFER_ADDRESS
FX_ERR_OBD_TRN_RCV_RESP_CONFLICT
FX_ERR_OBD_TRN_RCV_RESP_DATA
FX_ERR_OBD_TRN_RCV_RESP_TYPE
FX_ERR_OBD_TRN_RCV_RESP_ADDRESS
FX_ERR_OBD_TRN_MISSING_ACK
FX_ERR_OBD_TRN_RETRY_LIMIT_EXCEED

Synopsis
FXReturnCode fxWriteTransaction (
FXBusHandle busHandle,
uint32 t generation,
uint32 t destNode,
const FXAddresso64* offset,
void* buffer,
size t size,
const FXTransactionOptions* options,
FXTransactionHandle* transactionHandle

126 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

1394 APl Reference

10.3.1.3. fxLockTransaction

Description

This function sends a lock request packet to the specified destination node and waits to receive a response

packet.

Parameters

busHandle Reference handle to the bus to control. (see
fxCreateBusHandle)

generation Set this value to the current bus generation number. (see
fxGetBusGeneration)

destNode Node ID of destination device.

offset The start address of the IEEE1394 memory space of the
destination node.

operation Type of lock operation.

reqgBuffer User-specified buffer address. Data to be sent with lock
operation. The buffer needs to be allocated with
fxMemAlloc () .

reqgSize Size of data.

respBuffer User-specified buffer address. Pointer to data buffer to
which result of lock operation is copied.

respSize Pointer to size of the respBuffer.

options Pointer to FXTransactionOptions

transactionHand |(Filled with a new, valid transaction handle if no error 1is

le reported. For block mode, specify zero as pointer to a
handle.

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER
FX_ERR_INVALID_ADDRESS
FX_ERR_OBD_TRN_OPERATIONTIMEOUT
FX_ERR_INVALID_LOCAL_NODE_ID
FX_ERR_BUS_RESET_DETECT
FX_ERR_INTERNAL_ERROR
FX_ERR_LICENSE_MODULE
FX_ERR_LICENSE_EXPIRED
FX_ERR_FIRESTACK_DEMO_TIMEOUT
FX_ERR_OBD_TRN_INVALID_BUFFER_ADDRESS
FX_ERR_OBD_TRN_RCV_RESP_CONFLICT
FX_ERR_OBD_TRN_RCV_RESP_DATA
FX_ERR_OBD_TRN_RCV_RESP_TYPE
FX_ERR_OBD_TRN_RCV_RESP_ADDRESS
FX_ERR_OBD_TRN_MISSING_ACK
FX_ERR_OBD_TRN_RETRY_LIMIT_EXCEED

Synopsis

FXReturnCode fxLockTransaction (

FXBusHandle
uint32 t
uint32 t

busHandle,
generation,
destNode,

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 127

1394 APl Reference

10.3.1.4. fxClearTransaction

const FXAddresso64* offset,

uint32 t operation,

voidx* regBuffer,

size t reqgSize,

void* respBuffer,

size t* respSize,

const FXTransactionOptions* options,
FXTransactionHandle* transactionHandle

)

Description

This function cancels and deletes the transaction.

Parameters

transactionHandl

e

Reference handle to the outbound transaction data. (see
fxReadTransaction, fxWriteTransaction, fxLockTransaction)

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_OBD_TRN_INVALID_TRANSACTION_HANDLE

Synopsis

FXReturnCode fxClearTransaction (

FXTransactionHandle transactionHandle

)

10.3.1.5. fxClearAllTransactions

Description

This function cancels and deletes all existing transactions.

Parameters

busHandle

Reference handle to the bus to control. (see
fxCreateBusHandle)

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE

Synopsis

FXReturnCode fxClearAllTransactions (

FXBusHandle
)

busHandle

10.3.1.6. fxGetTransactionStatus

Description

This function returns the status and other attributes of the transaction.

Parameters

transactionHandl
e

Reference handle to the outbound transaction data. (see
fxReadTransaction, fxWriteTransaction, fxLockTransaction)

128

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

1394 APl Reference

info See FXTransactionInfo.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_OBD_TRN_INVALID_TRANSACTION_HANDLE

Synopsis

FXReturnCode fxGetTransactionStatus (
FXTransactionHandle transactionHandle,
FXTransactionInfo* info

)

10.3.1.7. fxGetNum Transactions

Description
This function will query for active transactions. A list of the transactions can be retrieved by calling
FxGetTransactionList.

Parameters

busHandle Reference handle to the bus to control. (see
fxCreateBusHandle)

numTransactions Returns the number of transactions.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
functionfxGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_LICENSE_MODULE
FX_ERR_LICENSE_EXPIRED
FX_ERR_FIRESTACK_DEMO_TIMEOUT

Synopsis

FXReturnCode fxGetNumTransactions (
FXBusHandle busHandle,
uint32 tx* numTransactions

)

10.3.1.8. fxGetTransactionList

Description

This function may be called after calling to FxGetNumTransactions to get an array of FXTransactionInfo
structures.

The user needs to take care of allocating an array and specifying its size when calling this function.

Parameters

busHandle Reference handle to the bus to control. (see
fxCreateBusHandle)

list Returns the number of transactions.

maxSize The number of FXTransactionInfo structures that fit in the
list.

size The actual number of FXTransactionInfo structures returned.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 129

1394 APl Reference

function fxGetErrorMessage to look up descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_LICENSE_MODULE
FX_ERR_LICENSE_EXPIRED
FX_ERR_FIRESTACK_DEMO_TIMEOUT

Synopsis

FXReturnCode fxGetTransactionList (
FXBusHandle busHandle,
FXTransactionInfo* list,
uint32 t maxSize,
uint32 t* size

)

10.3.2. Type Definitions
10.3.2.1. FXTransactionCompleteCallback

Description

This type definition defines the function prototype for transaction completion indication. If a read transaction
was performed in zero-copy mode, buffer points directly to the data of the received packet and shall only be
referred to during the callback. In any other case the buffer member is a memory pointer provided by user
when initiating the transaction.

Parameters
busHandle Reference handle to the bus to control. (see
fxCreateBusHandle)
userData Pointer to the data specified in FXTransactionOptions.
transactionHand |Reference handle to the outbound transaction data. (see
le fxReadTransaction, fxWriteTransaction, fxLockTransaction)
result Error status, response code, etc.
size Size of the received data buffer or the max size specified
whichever smaller.
buffer Buffer pointer either to the buffer specified by the user or
to the FireStack internal data buffer. (see
fxReadTransaction)
Synopsis
typedef int32 t (*FXTransactionCompleteCallback) (
FXBusHandle busHandle,
void* userData,
FXTransactionHandle transactionHandle,
uint32 t result,
size t size,
void¥* buffer

)7

10.3.3. Structures
10.3.3.1. FXTransactionOptions

Description

This structure defines options for an outbound transaction.

Members

timeout

The FireStack will wait for the specified time (in

130

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

1394 APl Reference

milliseconds) until the destination sends a response
packet.
callback Callback function (see FXTransactionCompleteCallback). In
blocking mode, this pointer will not be used.
userData Pointer to a user-specified data. The pointer will be
carried to user callback functions. See also
FXTransactionCompleteCallback.
speedMode Selects the speed mode for the outbound transaction. Value
shall either be FX SPEED TYPE AUTO or FX SPEED TYPE FIXED
or—-ed together with one of the speed macros FX SPEED 100 to
FX SPEED 3200.
Synopsis
typedef struct {
uint32 t timeout;
FXTransactionCompleteCallback callback;
void* userData;
uint32 t speedMode;

} FXTransactionOptions;

10.3.3.2. FXTransactioninfo

Description
This structure represents the current status of an outbound transaction.

Members

transactionHandle |[Reference handle to the outbound transaction data. (see
fxReadTransaction, fxWriteTransaction, fxLockTransaction)

nodeId Node ID to which the request was sent.

accessMode See Transaction Types.

status See Transaction Status.

Synopsis

typedef struct {

FXTransactionHandle transactionHandle;

uint32 t nodeId;
uint32 t accessMode;
uint32 t status;

} FXTransactionInfo;

10.3.4. Constants

10.3.4.1. Error Codes

The following values may be returned by Outbound Transactions functions.

FX ERR_OBD_TRN_INVALID_TRANSACTION_HANDLE
FX ERR_OBD_TRN_OPERATIONTIMEOUT

FX ERR_OBD_TRN_INVALID_BUFFER_ADDRESS
FX ERR_OBD_TRN_RCV_RESP_CONFLICT

FX ERR_OBD_TRN_RCV_RESP_DATA

FX ERR_OBD_TRN_RCV_RESP_TYPE

FX ERR_OBD_TRN_RCV_RESP_ADDRESS

FX_ ERR_OBD_TRN_MISSING_ACK

FX ERR_OBD_TRN_RETRY_LIMIT_EXCEED

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 131

1394 APl Reference

10.3.4.2. Transaction Status

FX_OBD_TRANSACTION_INACTIVE
FX_OBD_TRANSACTION_WAITING

FX OBD_TRANSACTION_SUCCESS
FX_OBD_TRANSACTION_TIMEOUT

FX OBD_TRANSACTION_BUSRESET
FX_OBD_TRANSACTION_RESPONSE_CONFLICT ERR
FX_OBD_TRANSACTION_RESPONSE_DATA_ERR
FX_OBD_TRANSACTION_RESPONSE_TYPE_ERR
FX_OBD_TRANSACTION_RESPONSE_ADDRESS_ERR
FX OBD_TRANSACTION_MISSING_ACK_ERR
FX_OBD_TRANSACTION_RETRY_LIMIT_EXCEED_ERR

ADN-O0O

20

22
23
24
25

132

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

1394 APl Reference

10.4. Isochronous Reception

This section forms the description of all functions and data structures needed for receiving isochronous
packets.

Followings should be considered and decided when a new context is created by
fxIsoRcvCreateContextHandle function.

1. Buffer mode (see below)

2. A channel number the new context will look for the reception. Multi-channel reception may be possible if
available; packets with more than one channel number can be received in one context program.

3. Choice of storing header/trailer. (see Context Options and Data Formats)

4. Other filtering options: tag values, etc. (see Context Options)

5. Running options - a context can wait for certain conditions before it starts receiving packets: sync value.

The Isochronous Reception module supports three different buffer modes: Buffer-Fill mode, Packet-per-Buffer
mode, and Dual-Buffer mode. A receive context can be created by selecting one of the buffer modes, and
each buffer mode has a dedicated adding-buffers function. When a new context is created, a user must
choose a buffer mode in which the context will run. The buffer mode, other context options, and event options
must be selected at the time of creation of a context; a user must create a new context if a context with
different options is needed.

¢ Buffer-Fill mode: In this mode, all received packets are concatenated into a contiguous stream of data
and fill each buffer completely. Packets may straddle multiple buffers in this mode.

packet 1 pack | Buffer ID =1

et 2 packet 3 Buffer ID=2

Buffer Fill Mode illustration

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 133

1394 APl Reference

e Packet-per-Buffer mode: Each received packet is stored in the buffer block added to the context by
calling the add-buffer(s) function for this mode. Any leftover data are discarded, and packets never straddle

into another buffer block which is added to the same context by calling another add-buffer(s) function. Each
buffer block consists of 1 to 8 separate buffers.

Buffer ID =1
pack bufferList[0]
et bufferList[1]
{Up for eight.. }
Buffer ID = 2
packat 2 bufferList[0]
bufferList[1]
(Up to aight. .)
Buffer ID =3
pa bufferList[0]
ke bufferList[1]
ta buffierList[2]
{Up to eight...)

Packet-per-buffer Mode illustration

134 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

1394 APl Reference

e Dual-Buffer mode: When an isochronous receive context is in dual-buffer mode, all received packets are
viewed as containing a first portion of the payload followed by a second portion. The dual-buffer mode
operations are similar to buffer-fill mode, but provide two separate series of buffers to stream isochronous
packet data: firstBuffer series and secondBuffer series. In this buffer mode, a buffer will be retired when
either the firstBuffer or secondBuffer has been filled by packet data.FirstBuffer data will not span a buffer. A
user must set up first data buffers in multiples of firstEachSize (including header and trailer quadlets if the
store-header option is enabled). The illustration below shows a sequence of varying length. The first buffer is
retired after packet 2 second data payload has spanned the second buffer, and the second buffer is retired
after packet 5 first data completely fills the first data buffer. Note that the context may receive packets with
empty second portions (i.e., only first data payload), and this is illustrated in the packet 3 and 4 below.

Buffer |0 =1
pkt 1 first pkt 2 first firstBuffer
pkt 1 second pkt 2 second secondBuffer
Buffer ID = 2
pkt 3 first pkt 4 first pkt 5 first firstBuffer
pkt 2 seacond {cont) pkt 5 second secondBuffer

Dual-Buffer Mode illustration

10.4.1. Feature Inquiry Functions
10.4.1.1. fxisoRcvGetNumberOfContexts

Description

This function returns the number of the receive contexts the stack supports.

Parameters

busHandle Reference handle to the bus to control. (see fxCreateBusHandle)

pNumber Address of integer value to which number of the receive
contexts will be returned.

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE

FX_ERR_INVALID_PARAMETER

Synopsis

FXReturnCode fxIsoRcvGetNumberOfContexts (
busHandle,

FXBusHandle
uint32 tx*

pNumber

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

135

1394 APl Reference

10.4.2. Reception Functions

10.4.2.1. Context Control

10.4.2.1.1 fxIlsoRc\vCreateContextHandle

Description

This function create an isochronous receive context with specified buffer mode, event options, and context

options.

Parameters

busHandle Reference handle to the bus to control. (see fxCreateBusHandle)

bufferMode Specify one of buffer modes. (see Buffer Modes)

pEventOptions [Pointer to FXIsoRcvEventOptions.

pContextOption|Pointer to FXIsoRcvOption. For available options please refer

S to Context Options. Options that not specified will just use
default values.

optionSize Specifies number of items in contextOptions.

pContextHandle|A pointer of handle to which a new receive context handle will be stored.

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER
FX_ERR_ISO_RCV_FEATURE_NOT_SUPPORTED
FX_ERR_ISO_RCV_MULTICHANNEL_BUFFER_MISMATCH
FX_ERR_ISO_RCV_MULTICHANNEL_NOT_AVAILABLE
FX_ERR_ISO_RCV_NO_AVAILABLE_CONTEXT

Synopsis

FXReturnCode fxIsoRcvCreateContextHandle (
FXBusHandle busHandle,
uint32 t bufferMode,
FXIsoRcvEventOptions* pEventOptions,
FXIsoRcvOption* pContextOptions,
size t optionSize,

FXIsoRcvContextHandle¥* pContextHandle

)

10.4.2.1.2 fxlsoRc\vCloseContextHandle

Description

This function closes specified context and frees its resources.

Parameters

contextHandle

Reference handle to the context to control. (see
fxIsoRcvCreateContextHandle)

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_ISO_RCV_INVALID_CONTEXT_HANDLE

Synopsis

136

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

1394 APl Reference

FXReturnCode fxIsoRcvCloseContextHandle (
FXIsoRcvContextHandle contextHandle

)
10.4.2.1.3 fxIsoRcvStartContext

Description
This function starts data reception with specific context.

Parameters

contextHandle |Reference handle to the context to control. (see
fxIsoRcvCreateContextHandle)

bufferID Buffer ID at which the context will start reception.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_ISO_RCV_INVALID_CONTEXT_HANDLE
FX_ERR_ISO_RCV_BUFFER_NOT_FOUND
FX_ERR_ISO_RCV_CONTEXT_MISMATCH
FX_ERR_INTERNAL_ERROR

Synopsis

FXReturnCode fxIsoRcvStartContext (
FXIsoRcvContextHandle contextHandle,
uint32 t bufferID

)
10.4.2.1.4 fxlsoRcvStopContext

Description
This function stops data reception with specific context.

Parameters

contextHandle |[Reference handle to the context to control. (see
fxIsoRcvCreateContextHandle)

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_ISO_RCV_INVALID_CONTEXT_HANDLE

Synopsis
FXReturnCode fxIsoRcvStopContext (
FXIsoRcvContextHandle contextHandle

)
10.4.2.1.5 fxlsoRcvContextStatus

Description
This function returns status of the specified context.

Parameters

contextHandle |[Reference handle to the context to control. (see
fxIsoRcvCreateContextHandle)

status Pointer to FXIsoRcvContextStatus.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 137

1394 APl Reference

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_ISO_RCV_INVALID_CONTEXT_HANDLE
FX_ERR_INVALID_PARAMETER

Synopsis

FXReturnCode fxIsoRcvContextStatus (
FXIsoRcvContextHandle contextHandle,
FXIsoRcvContextStatus* status

)
10.4.2.2. Buffer Control

In order to start a context for reception, the user first needs to setup the necessary buffers for packet storage.
Buffer Control functions can be used to register memory buffers with the Mil1394 reception module. The user
needs to take care of allocating memory blocks that can be used as reception buffer. As long as a piece of
memory is registered as reception buffer, the user may not free it or write to it. The user may read from it at
all times. After removing a buffer from the reception list, the user may write and/or free memory again.

Buffers need to be setup such that they form a list. It is not allowed to link buffers in a loop. Having buffers in
a loop fashion would yield unspecified results.

Multiple lists can be setup in memory and when starting a context for reception, a specific buffer can be
used as starting point for storing the packets. Please also note that adding the same buffer to more than one
list yields unspecified results.

Please refer to Data Formats for a detailed specification of the received data format.

Invalid Case
Buffer ID =3 Buffer ID=12 Buffer ID =19 Buffer |D = 25
fulsoRcvBufferFillAddBuffen] 12) or
fxlsoRevPkiPerBufferAddBuffer] 12) or
falsoRcvDualBufferAddBulfer 12)
Nea: anty prevBuffarlD param is shown
Valid Case

Buffer ID = 3 Buffer ID =12 Buffer ID =19 Buffer ID = 25

~ T]

fxlscRovBufferFill AddBuffer] 25) or
fxlsoRcyPkiPerBufferAddBuffer| 25) or

fxlsoRovDualBufferAddBuffer] 25)
Mate: only pravBuffenD param is shown

Buffer ID =3 Buffer ID = 12 Buffer ID =19 Buffer ID = 25 Buffer ID = 26

Add a new buffer to existing list - previous buffer must be the last one of the list

138 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

1394 APl Reference

Invalid Case

Buffer ID =3 Buffer ID = 12 Buffer ID =19 Buffer ID = 25

— —| — — —

frlsoRevLinkBuffers{ 12, 23) — Nols: only from and to buffer 1D params are shown

Buffer ID = 23 Buffer ID = 15 Buffer ID = 34

X

Valid Case
Buffer ID=3 Buffer ID = 12 Buffer ID =19

— —{ —L

fxlsoRcvLinkBuffers(19, 23) - Mofe: only from and fo buffer ID params are shown

Buffer ID = 23 Arlnﬂs Buffer 1D =34

\

Buffer ID=19 Buffer ID =23 Buffer ID = 15 Buffer ID = 34

—— — — —

Buiffer ID =3 Buffer ID = 12

— —

Link two lists of buffers - "From" must be the last one of one list, and "To" must be the first one of another list

Buffer ID = 3 Buffer ID =12 Buffer ID =19 Buffer |ID =25

fxlsoRcvRemoveBuffen 12)
Mata: only buiffar ID param (s shown

Buffer ID=3 Buffer ID = 19 Buffer ID= 25

Remove a buffer from the list

Buffer ID = 3 Buffer ID = 12 Buffer ID=19 Buffer ID =23 Buffer ID= 15 Buffer ID = 34

— — —_ L
fulsoRevRemoveBuffers(12, 16 T— Note: only from and to buffer 1D params are shown

Buffer ID = 3 Buffer ID = 34

— ¥

Remove buffers from the list

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 139

1394 APl Reference

Buffer ID = 3

— M "~ F— —

Buffer ID = 12 Buffer ID = 19 Buffer 1D =23 Buffer 10 =15 Buffer ID = 34

fxlsoRcvRemoveBuffers(Z3, 1— Note: anly from and to buffer ID params are shown

Buffer ID = 3 Buffer ID = 12 Buffer ID = 19

— =

Remove buffers from the list - toBuffer is NOT linked after fromBuffer - remove from fromBuffer till the end of

buffer list

10.4.2.2.1 fxIsoRcvBufferFillAddBuffer

Description

This function adds a new receive buffer to the specified context that is created in the Buffer-Fill mode. If
prevBufferID is set, prevBuffer's forward link will point to the new buffer.

Parameters

contextHandle [Reference handle to the context to control. Must be created by
fxIsoRcvCreateContextHandle with FX ISO RCV_CNTX MODE BUFF FILL
buffer mode.

prevBufferID 0 (zero) specifies first buffer in list.

bufferOptions |User defined list of FXIsoRcvOption elements that together form
the options for the context. For available options please refer
to Buffer Options. Options that not specified will just use
default values.

optionsSize Specifies the number of items in the bufferOptions.

buffer Pointer to a DMA-capable buffer allocated by the user. (see
fxMemAlloc for allocating DMA-capable buffers)

size Size of buffer in bytes.

newBufferID Filled with a new, valid bufferID if no error is reported.

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER
FX_ERR_ISO_RCV_INVALID_CONTEXT_HANDLE
FX_ERR_ISO_RCV_BUFFER_TYPE_MISMATCH
FX_ERR_ISO_RCV_BUFFER_NOT_FOUND
FX_ERR_ISO_RCV_CONTEXT_MISMATCH
FX_ERR_ISO_RCV_NO_AVAILABLE_BUFFER
FX_ERR_ISO_RCV_BUFFER_NOT_LAST_OF_LIST

Synopsis

FXReturnCode fxIsoRcvBufferFillAddBuffer (
FXIsoRcvContextHandle contextHandle,

uint32 t prevBufferID,
FXIsoRcvOption¥* bufferOptions,
size t optionsSize,
void¥* buffer,

size t size,

140

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

1394 APl Reference

uint32 tx*
)

newBufferID

10.4.2.2.2 fxlsoRcvPktPerBufferAddBuffer

Description

This function adds a new receive buffer to the specified context that is created in the Packet-per-Buffer mode.

If prevBufferID is set,

prevBuffer's forward link will point to the new buffer.

Parameters

contextHandle |Reference handle to the context to control. Must be created by
fxIsoRcvCreateContextHandle with
FX ISO RCV_CNTX MODE PKT PER BUFF buffer mode.

prevBufferID 0 (zero) specifies first buffer in list.

bufferOptions |User defined list of FXIsoRcvOption elements that together form
the options for the context. For available options please refer
to Buffer Options. Options that not specified will just use
default values.

optionsSize Specifies the number of items in the bufferOptions.

bufferlList User defined list (up to 8) of FXIsoRcvBuffer.

newBufferID Filled with a new, valid bufferID if no error is reported.

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER
FX_ERR_ISO_RCV_INVALID_CONTEXT_HANDLE
FX_ERR_ISO_RCV_BUFFER_TYPE_MISMATCH
FX_ERR_ISO_RCV_BUFFER_NOT_FOUND
FX_ERR_ISO_RCV_CONTEXT_MISMATCH
FX_ERR_ISO_RCV_NO_AVAILABLE_BUFFER
FX_ERR_ISO_RCV_BUFFER_NOT_LAST_OF_LIST

Synopsis

FXReturnCode fxIsoRcvPktPerBufferAddBuffer (
FXIsoRcvContextHandle contextHandle,

uint32 t prevBufferlID,
FXIsoRcvOption* bufferOptions,
size t optionsSize,
FXIsoRcvBuffer bufferList[8],
uint32 tx* newBufferID

)

10.4.2.2.3 fxlsoRcvDualBufferAddBuffer

Description

This function adds a new receive buffer to the specified context that is created in the Dual-Buffer mode. If
prevBufferlD is set, prevBuffer's forward link will point to the new buffer.

Parameters

contextHandle |Reference handle to the context to control. Must be created by
fxIsoRcvCreateContextHandle with FX ISO RCV_CNTX MODE DUAL BUFF
buffer mode.

prevBufferID 0 (zero) specifies first buffer in list.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 141

1394 APl Reference

10.4.2.2.4 fxlsoRcw.inkBuffers

bufferOptions

User defined list of FXIsoRcvOption elements that together form
the options for the context. For available options please refer
to Buffer Options. Options that not specified will just use
default values.

optionsSize

Specifies the number of items in the bufferOptions.

numFirst

Specifies the number of
in the first buffer.

the beginning of packets to be stored

firstEachSize

Specifies the maximum size of each packet fragment the first
buffer will store. Must be multiple of 4 and at least 8 bytes.

firstBuffer

Pointer to a DMA-capable buffer allocated by the user. Must be
large enough to store (numFirst * firstEachSize) bytes of data.
(see fxMemAlloc for allocating DMA-capable buffers)

secondBuffer

Pointer to a DMA-capable buffer allocated by the user.
Remaining portion of packets (after storing its first portion
to the first buffer) will be stored to this buffer in buffer-
fill fashion. (see fxMemAlloc for allocating DMA-capable
buffers)

secondSize

Size of secondBuffer in bytes.

newBufferID

Filled with a new, valid bufferID if no error is reported.

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER
FX_ERR_ISO_RCV_INVALID_CONTEXT_HANDLE
FX_ERR_ISO_RCV_BUFFER_TYPE_MISMATCH
FX_ERR_ISO_RCV_BUFFER_NOT_FOUND
FX_ERR_ISO_RCV_CONTEXT_MISMATCH
FX_ERR_ISO_RCV_NO_AVAILABLE_BUFFER
FX_ERR_ISO_RCV_BUFFER_NOT_LAST_OF_LIST

Synopsis

FXReturnCode fxIsoRcvDualBufferAddBuffer (

FXIsoRcvContextHandle

contextHandle,

uint32 t prevBufferlID,
FXIsoRcvOption* bufferOptions,
size t optionsSize,
size t numFirst,

size t firstEachSize,
void* firstBuffer,
void* secondBuffer,
size t secondSize,
uint32 t* newBufferID

)

Description

This function links two buffer lists together. Two buffers must belong to the same context.

Parameters

contextHandle

Reference handle to the context to control.
fxIsoRcvCreateContextHandle)

(see

142

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

1394 APl Reference

fromBufferID toBufferID below will be appended to this bufferID. Must be the
last buffer of a buffer list.
toBufferID This bufferID will be appended to fromBufferID above. Must Dbe

the first buffer of a buffer list.

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_ISO_RCV_INVALID_CONTEXT_HANDLE
FX_ERR_ISO_RCV_BUFFER_NOT_FOUND
FX_ERR_ISO_RCV_CONTEXT_MISMATCH
FX_ERR_ISO_RCV_BUFFER_NOT_FIRST_OF_LIST
FX_ERR_ISO_RCV_BUFFER_NOT_LAST_OF_LIST
FX_ERR_INTERNAL_ERROR

Synopsis

FXReturnCode fxIsoRcvLinkBuffers(
FXIsoRcvContextHandle contextHandle,

uint32 t
uint32 t
)

fromBufferID,
toBufferID

10.4.2.2.5 fxlsoRcvRemowveBuffer

Description

This function deletes the specified receive buffer from the receive context.

Parameters

contextHandle [Reference handle to the context to control. (see
fxIsoRcvCreateContextHandle)

bufferID Buffer to remove from the list.

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_ISO_RCV_INVALID_CONTEXT_HANDLE
FX_ERR_ISO_RCV_CONTEXT_MISMATCH
FX_ERR_INTERNAL_ERROR

Synopsis

FXReturnCode fxIsoRcvRemoveBuffer (
FXIsoRcvContextHandle contextHandle,

uint32 t
)

bufferID

10.4.2.2.6 fxlsoRcvRemoweBuffers

Description

This function deletes the specified receive buffers from the receive context.

Parameters

contextHandle [Reference handle to the context to control. (see
fxIsoRcvCreateContextHandle)

fromBufferID First buffer to remove from the list.

toBufferID Last buffer to remove from the list.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 143

1394 APl Reference

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_ISO_RCV_INVALID_CONTEXT_HANDLE
FX_ERR_ISO_RCV_CONTEXT_MISMATCH
FX_ERR_INTERNAL_ERROR

Synopsis

FXReturnCode fxIsoRcvRemoveBuffers (
FXIsoRcvContextHandle contextHandle,
uint32 t fromBufferlID,
uint32 t toBufferID

)

10.4.2.2.7 fxlsoRcvBufferFillBufferStatus

Description
This function returns the status of the specified buffer created by fxIlsoRcvBufferFillAddBuffer.

Parameters

contextHandle [Reference handle to the context to control. (see
fxIsoRcvCreateContextHandle)

bufferID ID of the receive buffer.

pStatus Pointer to FXIsoRcvBufferFillBufferStatus.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_ISO_RCV_INVALID_CONTEXT_HANDLE
FX_ERR_INTERNAL_ERROR
FX_ERR_ISO_RCV_BUFFER_NOT_FOUND
FX_ERR_ISO_RCV_CONTEXT_MISMATCH
FX_ERR_INVALID_PARAMETER

Synopsis

FXReturnCode fxIsoRcvBufferFillBufferStatus (
FXIsoRcvContextHandle contextHandle,
uint32 t bufferlD,
FXIsoRcvBufferFillBufferStatus* pStatus

)

10.4.2.2.8 fxlsoRcvPktPerBufferBufferStatus

Description
This function returns the status of the specified buffer created by fxlsoRcvPktPerBufferAddBuffer.

Parameters

contextHandle |Reference handle to the context to control. (see
fxIsoRcvCreateContextHandle)

bufferID ID of the receive buffer.

pStatus Pointer to FXIsoRcvPktPerBufferBufferStatus.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the

144

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

1394 APl Reference

function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_ISO_RCV_INVALID_CONTEXT_HANDLE
FX_ERR_INTERNAL_ERROR
FX_ERR_ISO_RCV_BUFFER_NOT_FOUND
FX_ERR_ISO_RCV_CONTEXT_MISMATCH
FX_ERR_INVALID_PARAMETER

Synopsis

FXReturnCode fxIsoRcvPktPerBufferBufferStatus(
FXIsoRcvContextHandle contextHandle,
uint32 t bufferlD,
FXIsoRcvPktPerBufferBufferStatus* pStatus

)
10.4.2.2.9 fxIsoRcvDualBufferBufferStatus

Description
This function returns the status of the specified buffer created by fxIlsoRcvDualBufferAddBuffer.

Parameters

contextHandle |[Reference handle to the context to control. (see
fxIsoRcvCreateContextHandle)

bufferID ID of the receive buffer.

pStatus Pointer to FXIsoRcvDualBufferBufferStatus.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_ISO_RCV_INVALID_CONTEXT_HANDLE
FX_ERR_INTERNAL_ERROR
FX_ERR_ISO_RCV_BUFFER_NOT_FOUND
FX_ERR_ISO_RCV_CONTEXT_MISMATCH
FX_ERR_INVALID_PARAMETER

Synopsis

FXReturnCode fxIsoRcvDualBufferBufferStatus (
FXIsoRcvContextHandle contextHandle,
uint32 t bufferlID,
FXIsoRcvDualBufferBufferStatus>* pStatus

)

10.4.3. Type Definitions
10.4.3.1. FXIsoRcvContextHandle

Description
Handle to an isochronous receive context created by fxlsoRcvCreateContextHandle function.

Synopsis
typedef uint32 t FxIsoRcvContextHandle;

10.4.3.2. FXIsoRcvCallback

Description
This function definition is used to specify a callback function that can be used as
¢ buffer full callback

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 145

1394 APl Reference

Parameters

handle Reference handle to the bus to control. (see fxCreateBusHandle)
userData Pointer data specified in FXIsoRcvEventOptions.

contextHandle |Context handle that is associated with the callback occurrence.

Synopsis

typedef void (*FXIsoRcvCallback) {
FXBusHandle handle,
void* userData,

FXIsoRcvContextHandle contextHandle

) ;
10.4.4. Structures
10.4.4.1. FXIsoRcvOption

Description
This structure defines isochronous context and buffer options.

Members
optionId ID value of the option to set.
value Value to set for the specified option.
Synopsis
typedef struct {
uint32 t optionId;
uint32 t value;

} FXIsoRcvOption;

10.4.4.2. FXIsoRcvBuffer

Description
This structure can be used to specify the location and size of a DMA-capable buffer.

Members
data Pointer to a DMA-capable buffer allocated by the user.
(see fxMemAlloc for allocating DMA-capable buffers)
size Size of data in bytes.
Synopsis
typedef struct {
voidx* data;
size t size;

} FXIsoRcvBuffer;

10.4.4.3. FXIsoRcvEventOptions

Description
This structure defines data members that will be used for a receive event.

Members

callback Specify callback function pointer or zero to clear. (see
FXIsoRcvCallback)

userData Pointer data of a user-specific data. The data will be
carried to user callback functions. (see FXIsoRcvCallback)

146 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

1394 APl Reference

Synopsis
typedef struct {
FXIsoRcvCallback callback;
void* userData;
} FXIsoRcvEventOptions;

10.4.4.4. FXIsoRcvBufferStatus

Description
This comon structure defines data fields indicating the current status of the receive buffer.

Members
statusCode Current status of the buffer:
= 1: Running - Buffer is currently being or will be
written to.
= 0: Stopped - Buffer is filled.
prevBufferID Buffer ID of this buffer is linked from. 0 (zero) if this
buffer is the first one of the buffer list.
nextBufferID Buffer ID of this buffer is linked to. O(zero) if this
buffer is the last one of the buffer list.
Synopsis
typedef struct {
int32 t statusCode;
uint32 t prevBufferID;
uint32 t nextBufferID;

} FXIsoRcvBufferStatus;

10.4.4.5. FXIsoRcvBufferFillBufferStatus

Description
This structure defines data fields indicating the current status of the receive buffer for the Buffer-Fill mode.

Members
status See FXIsoRcvBufferStatus.
buffer One entry of FXIsoRcvBuffer. It is the same buffer that is
specified with fxIsoRcvBufferFillAddBuffer.
writeOffset Byte offset within buffer memory the stack will write the
next data to. This field is updated after a packet has
been received and/or after a buffer has been completely
filled.
Synopsis
typedef struct {
FXIsoRcvBufferStatus status;
FXIsoRcvBuffer buffer;
uint32 t writeOffset;

} FXIsoRcvBufferFillBufferStatus;

10.4.4.6. FXIsoRcvPktPerBufferBufferStatus

Description

This structure defines data fields indicating the current status of the receive buffer for the Packet-per-Buffer
mode.

Members

|status See FXIsoRcvBufferStatus.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

147

1394 APl Reference

bufferlList Arrays of FXIsoRcvBuffer. It is the same buffer array that
is specified with fxIsoRcvPktPerBufferAddBuffer.

writeOffset Byte offset within buffer memory. Indicates either zero
(no packet has been written) or the size of a complete
packet received.

Synopsis

typedef struct {

FXIsoRcvBufferStatus

status;

FXIsoRcvBuffer

uint32 t

bufferList[8];
writeOffset;

} FXIsoRcvPktPerBufferBufferStatus;

10.4.4.7. FXIsoRcvDualBufferBufferStatus

Description

This structure defines data fields indicating the current status of the receive buffer for the Dual-Buffer mode.

Members

status See FXIsoRcvBufferStatus.

firstBuffer One entry of FXIsoRcvBuffer. It is the same buffer that is
specified as "firstBuffer" with
fxIsoRcvDualBufferAddBuffer.

secondBuffer One entry of FXIsoRcvBuffer. It is the same buffer that is
specified as "secondBuffer" with
fxIsoRcvDualBufferAddBuffer.

firstWriteOffset Byte offset within buffer memory the stack will write the
next data to. This field is updated after a packet has
been received and/or after a buffer has been completely
filled.

secondWriteOffset Same as firstWriteOffset, but only valid if the buffer is
created by fxIsoRcvDualBufferAddBuffer; otherwise zero.

Synopsis
typedef struct {

FXIsoRcvBufferStatus

status;

FXIsoRcvBuffer

FXIsoRcvBuffer

uint32 t
uint32 t

firstBuffer;
secondBuffer;
firstWriteOffset;
secondWriteOffset;

} FXIsoRcvDualBufferBufferStatus;

10.4.4.8. FXIsoRcvContextStatus

Description

This structure defines data members used for status inquiry for a receive context.

Members

statusCode

Current status of the context:
1:
packets.

0: Stopped - Context has not yet started, stopped by
FxIsoRcvStopContext (), or has reached the end of receive
buffer list.

Running - Context is currently actively receiving

curWriteBufferID

This field contains the buffer ID that is currently being
This basically means that any packet in

written to.

148

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

1394 APl Reference

progress, or the next packet if no packet is in progress,
will be written to this buffer ID. This field will be
updated each time the hardware has completely filled a

buffer.
Synopsis
typedef struct {
int32 t statusCode;
uint32 t curWriteBufferID;

} FXIsoRcvContextStatus;

10.4.5. Constants
10.4.5.1. Buffer Modes

Define

Value

Description

FX_ ISO_RCV_CNTX MODE_BUFF_FILL

All received packets are concatenated into a
contiguous stream of data and fill each buffer
completely. Packets may straddle multiple
buffers in this mode.

FX ISO_RCV_CNTX MODE_PKT PER_BUFF

Each received packet is stored in the buffer
block added to the context by calling the
add-buffer(s) function for this mode. Any
leftover data are discarded, and packets
never straddle into another buffer block which
is added to the same context by calling
another add-buffer(s) function. Each buffer
block consists of 1 to 8 separate buffers

FX ISO_RCV_CNTX MODE_DUAL_BUFF

When an isochronous receive context is in
dual-buffer mode, all received packets are
viewed as containing a first portion of the
payload followed by a second portion. The
dual-buffer mode operations are similar to
bufferfill mode, but provide two separate
series of buffers to stream isochronous
packet data: firstBuffer series and
secondBuffer series.

10.4.5.2. Context Options

Define

Value

Description

FX ISO_RCV_OPT_CNTX STORE_HEADER

12011

If enabled (value 1), received isochronous
packets will include the complete 4-byte
isochronous packet header. The end of the
packet will be marked with a speed code
and an event code in the first doublet, and
1 16-bit timeStamp indicating the time of
the most recently received (or sent) cycle
start packet. If disabled (value 0), the
packet header is stripped off of received
isochronous packets. (see Data Formats)
1: Store isochronous header, 0: Not store -
default: 1

FX ISO_RCV_OPT_CNTX TAG1_SYNC_FILTER

12012

If enabled and

FX ISO_RCV_OPT_CNTX TAG1_EN s
enabled, then packets with tag value 1 will
only be accepted into the corresponding

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

149

1394 APl Reference

Define Value Description

context if the two most-significant bits of
the packet's sync field are 0 (zero).
Packets with tag values other than 1 will be
filtered according to the

FX ISO_RCV_OPT_CNTX TAGO_ENO,

FX ISO_RCV_OPT_CNTX TAGO_EN2,

FX ISO_RCV_OPT_CNTX TAGO_EN3
settings with no additional restrictions.

1: Enable, 0: Disable - default: 0

This value will be compared to the sync

field of each isochronous packet for the

FX ISO RCV OPT CNTX SYNC VALUE 12013 corresponding context if a receiving buffer
- - - - - - has wait_for_sync option (see Buffer

Options) enabled.

Valid range: 0 to 15 - default: 0

Isochronous channel number for which the
FX ISO_RCV_OPT_CNTX CHANNEL_NUM 12014 corresponding context will accept packets.
Valid range: 0 to 63 - default: 0

Enable the multi-channel receive on the
corresponding context if this value or the
value of

FX ISO_RCV_OPT_CNTX MULTI_CHANN
EL_EN_LO is non-zero. Valid range: 0 to
OxFFFFFFFF (channel 63-32). The value of
0x10000000 indicates enabling iso channel
63. Default: 0

Enable the multi-channel receive on the
corresponding context if this value or the
value of

FX ISO_RCV_OPT_CNTX MULTI_CHANNEL_EN_L 12016 FX ISO_RCV_OPT_CNTX MULTI_CHANN
0] EL_EN_HlI is non-zero. Valid range: 0 to
OxFFFFFFFF (channel 31-0). The value of
0x10000000 indicates enabling iso channel
31.Default: 0

Any 15-bit values (0 to Ox7FFF) enable the
cycle match feature that keeps the
corresponding context from running until
FX ISO_RCV_OPT CNTX CYCLE_MATCH 12017 the value matches to the low grder two bits

of cycleSeconds and the 13-bit cycleCount
field in the cycle start packet. Disabled if
value is greater than Ox7FFF - default:
0x8000 (disabled)

If enabled, the corresponding context will

match on isochronous receive packet with
FX ISO_RCV_OPT_CNTX TAGO_EN 12018 a tag field of 0. 1: Enable, 0: Disable -

default: 1
If enabled, the corresponding context will

tch on isochronous receive packet with
FX_ISO_RCV_OPT_CNTX TAG1_EN 12019 | .
- = - - - - a tag field of 1. 1: Enable, 0: Disable -

default: 1
If enabled, the corresponding context will

match on isochronous receive packet with
FX ISO_RCV_OPT_CNTX TAG2_EN 12020 a tag field of 2. 1: Enable, 0: Disable -

default: 1
FX ISO_RCV_OPT CNTX TAG3_EN 12021 If enabled, the corresponding context will

FX ISO_RCV_OPT_CNTX MULTI_CHANNEL_EN_HI 12015

150 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

1394 APl Reference

Define

Value Description

match on isochronous receive packet with
a tag field of 3. 1: Enable, 0: Disable -
default: 1

10.4.5.3. Buffer Options

Define

Value Description

FX_ISO_RCV_OPT BUFF_WAIT SYNC 12111 |1 Wait for sync value to match 0: not -

default: 0 (see Context Options)

FX ISO_RCV_OPT BUFF_ENABLE_CALLBACK |12112 |1: Callback will be called upon completion

of buffer 0: not - default: 0

10.4.5.4. Error Codes

Define Description

FX ERR_ISO_RCV_INVALID_CONTEXT HANDLE Specified context handle is invalid
FX ERR_ISO_RCV_BUFFER_NOT_FOUND Specified buffer ID does not exist
FX ERR ISO RCV_FEATURE_NOT SUPPORTED Specified feature is not supported
FX ERR_ISO_RCV_BUFFER TOO_LARGE Specified receive buffer is too large
FX ERR ISO RCV_NO_AVAILABLE CONTEXT All contexts have been used

FX ERR_ISO_RCV_BUFFER_TYPE_MISMATCH a%‘zziﬁed context has a wrong buffer
FX ERR_ISO_RCV_CONTEXT MISMATCH E:;fegt‘ﬁer must belong to the same

FX_ ERR_ISO_RCV_NO_AVAILABLE_BUFFER

All resource for buffer control data
have been used

FX ERR_ISO_RCV_BUFFER NOT LAST OF LIST Specified buffer is not the last one

FX ERR_ISO_RCV_BUFFER _NOT FIRST OF_LIST Specified buffer is not the first one

FX ERR_ISO_RCV_MULTICHANNEL_BUFFER_MISMATCH |in Buffer-Fill mode and with Store

Multi-channel option must be enabled

Isoch-header option

FX ERR_ISO_RCV_MULTICHANNEL NOT AVAILABLE Multi-channel feature is currently used

by the other context

10.4.6. Data Formats

There are four formats for isochronous receive packets depending on the settings of the store-header context
option (see Context Options) and the buffer mode (see Buffer Modes). If the store-header option is disabled,
then only the isochronous data without any padding, header quadlet or timestamp quadlet is put in the buffer.

Isochronous receive fields

field bits|description

data length 16 [Number of bytes of isochronous data in this packet.
tag 2 [The data format of this isochronous data.

channel 6 [The channel number this packet is associated with.
tcode 4 |The transaction code (should always be 0xA)

sy 4 |Synchronization control field.

isochronous data

The data received with this buffer. The last quadlet will be padded with zeroes, if
necessary.

padding

If the data length mode 4 is not zero, then zero-value bytes have been added onto
the end of the packet to guarantee that a whole number of quadlets was sent. In
three formats, the pad bytes are stripped off the packet.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 151

1394 APl Reference

field bits|description

speed 3 [Speed Code:
0 = 100Mb/s
1 = 200Mb/s
2 = 400Mb/s
3 = 800Mb/s

event code 5 [0x02 = Long packet. The received data length was greater than the buffer's data
length.
0x11 = Complete.
0x1D = In the Packet-per-Buffer mode, this event code indicates that a data field
CRC or data length error was detected.

timeStamp 16 [The time at which this packet was received, specified by the three low order bits of
cycleSeconds, and the 13-bis of cycleCount from the most recently received (or
sent) cycle start packet.

10.4.6.1. Buffer-Fill mode Data Formats

10.4.6.1.1 With Header/Trailer

The format of an isochronous receive packet with a context in the Buffer-Fill mode and the store-header option
(see Context Options) enabled.

31/30]29[28]27]|26]25[24]23]22[21]20][19][18]17[16[15]14[13]12][11][10] 9 [8] 7|6 [5]4[3]2[1]0

data length tag channel tcode sy

isochronous data (include padding if needed)

speed event code timeStamp

10.4.6.1.2 Without Header/Trailer

The format of an isochronous receive packet with a context in the Buffer-Fill mode and the store-header option
(see Context Options) disabled.

31/30]29[28]27]|26]25]24]23]22[21]20][19][18]17[16]15]14[13]12][11][10] 9[8[7|6 [5]4[3]2[1]0

Data is appended to other byte-aligned data (if any) in the buffer-fill mode buffer isochronous data --->

isochronous data

<--- isochronous data

Padding (if any) is stripped from the packet in this mode

152

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

1394 APl Reference

10.4.6.2. Packet-per-buffer mode and dual-buffer mode Data Formats

10.4.6.2.1 With Header/Trailer

The format of an isochronous receive packet with a context in the Packet-per-Buffer mode or the Dual-Buffer

mode; and the store-header option (see Context Options) enabled.

31[30[29|28|27|2625]24] 23] 22]21]20]19]18]17]16

15[14[13]12[11]10] 98| 7[6]5[4[3]2[1]0

timeStamp

data length

tag

channel

tcode

sy

aligned.

If headers & data are in the same buffer, then the data will be quadlet aligned.
If headers are in a separate buffer from the data, then the data buffer may be byte

isochronous data -—>

isochronous data

<--- isochronous data

Padding (if any) is stripped from the packet in this mode.

10.4.6.2.2 Without Header/Trailer

The format of an isochronous receive packet with a context in the Packet-per-Buffer mode or the Dual-Buffer
mode; and the store-header option (see Context Options) disabled.

31/30]29[28]27]26]25[24]23]22[21]20]19[18]17]16[15]14[13]12]11][10] 9 [8

7lels5[4a]3]2]1]0

Buffers with data only (no headers), like this, may be byte aligned

isochronous data --—->

isochronous data

<--- isochronous data

Padding (if any) is stripped from the packet in this mode

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

153

1394 APl Reference

10.5. Low-Level 1394

10.5.1. Settings
10.5.1.1. Resource Usage

The following settings can be used as settingld in an FXSetting instance passed to xCreateBusHandle() to
control resource usage by the Low-Level module for the bus that is being opened.

FX_SETTING_ID_ASYNC_MAX TRM_ QUEUE_LENGTH
This setting determines the maximum number of Asynchronous packets that may reside in the transmit
queue at any given point in time. As soon as a packet needs to be transmitted while the queue is full an error
would be returned.

Minimum:4, Maximum 10000, Default: 5120

FX_SETTING_ID ASYNC_ NUM RCV_BUFFERS
This setting determines how many buffers of the maximum buffer size supported by the Link Layer will be
used to form the complete Asynchronous Reception buffer list. As long as buffer space is available, no
Asynchronous packet will be missed by the hardware. As soon as software can not keep up with processing
the received packets, the buffers will start filling up.

Minimum: 4, Maximum: 100, Default: 30

10.5.2. Functions

10.5.2.1. Asynchronous Packet Reception Functions
10.5.2.1.1 fxAsyRcwVaitSingleRequest

Description

This function can be used to receive a request packet which is sent to the local node.

Note that this is a blocking function, only one fsAsyRcwWVaitSingleRequest or fxAsyRcwWVaitSingleResponse
may be active per bus at any time.

Parameters

handle Reference handle to the bus to control.
(see fxCreateBusHandle)

data Pointer to data receive buffer which must be at least large
enough to the 'size' parameter below.

size Pointer to size data of the receive buffer in bytes. This
function will update its value with the amount of written
bytes.

speed Pointer to data to which the speed of the received packet is
set.

ackCode Pointer to data to which the acknowledge code of the received
packet is set.

timeout This function returns with the timeout error if no packet is
received within the specified amount of time (milliseconds).

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_LOW_LVL_RECEIVE_TIMEOUT
FX_ERR_INVALID_PARAMETER

154

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

1394 APl Reference

Synopsis
FXReturnCode fxAsyRcvWaitSingleRequest (
FXBusHandle handle,
uint8 t* data,
uint32 tx* size,
uint32 t* speed,
uint32 t* ackCode,
uint32 t timeout

)

10.5.2.1.2 fxAsyRcwVaitSingleResponse

Description

This function can be used to receive a response packet which is sent to the local node.
Note that this is a blocking function, only one fsAsyRcwWVaitSingleResponse or fxAsyRcwWVaitSingleRequest
may be active per bus at any time.

Parameters

handle Reference handle to the bus to control.
(see fxCreateBusHandle)

data Pointer to data receive buffer which must be at least large
enough to the 'size' parameter below.

size Pointer to size data of the receive buffer in bytes. This
function will update its value with the amount of written
bytes.

speed Pointer to data to which the speed of the received packet is
set.

ackCode Pointer to data to which the acknowledge code of the received
packet is set.

timeout This function returns with the timeout error if no packet is
received within the specified amount of time (milliseconds).

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_LOW_LVL_RECEIVE_TIMEOUT
FX_ERR_INVALID_PARAMETER

Synopsis
FXReturnCode fxAsyRcvWaitSingleResponse (
FXBusHandle handle,
uint8 t* data,
uint32 tx* size,
uint32 t* speed,
uint32 t* ackCode,
uint32 t timeout

)

10.5.2.1.3 fxAsyRcvSetPacketCallback

Description

This function can be used to register a callback that will be called for each Asynchronous packet that is
received by the Link Layer controller.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 155

1394 APl Reference

Parameters

handle Reference handle to the bus to control.
(see fxCreateBusHandle)

callback Function pointer of the user-defined function that needs to be
called when an Asynchronous Packet is received. (see
FXAsyRcvPacketCallback)

userData Pointer to a user-specified data. The pointer will be carried
to the user callback function specified above.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_LOW_LVL_RECEIVE_TIMEOUT
FX_ERR_INVALID_PARAMETER

Synopsis

FXReturnCode fxAsyRcvSetPacketCallback(
FXBusHandle handle,
FXAsyRcvPacketCallback callback,
void* userData

)
10.5.2.2. Single Packet Transmission Functions
10.5.2.2.1 xAsyTrmWriteQuadletRequest

Description
This function can be used to transmit a single Write Quadlet Request packet.

Parameters
handle Reference handle to the bus to control.
(see fxCreateBusHandle)
speed Transmission speed. See Speed Codes for a valid value.
nodeID Destination node ID to which a new packet is sent.

transactionLab |Transaction Label field in the header.

el

retryCode Retry Code field in the header.
offset Pointer to FXAddress64 structure.
data Quadlet data to be sent.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_ADDRESS
FX_ERR_INVALID_LOCAL_NODE_ID
FX_ERR_INVALID_PARAMETER
FX_ERR_BUS_RESET_DETECT
FX_ERR_INTERNAL_ERROR

Synopsis
FXReturnCode fxAsyTrmWriteQuadletRequest (

156 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

1394 APl Reference

FXBusHandle handle,

uint32 t speed,

uint32 t nodelD,

uint32 t transactionLabel,
uint32 t retryCode,

const FXAddress64* offset,

uint32 t data

)

10.5.2.2.2 fxAsyTrmWriteBlockRequest

Description

This function can be used to transmit a single Write Block Request packet.

Parameters
handle Reference handle to the bus to control.
(see fxCreateBusHandle)
speed Transmission speed. See Speed Codes for a valid value.
nodelID Destination node ID to which a new packet is sent.
transactionLab [Transaction Label field in the header.
el
retryCode Retry Code field in the header.
offset Pointer to FXAddress64 structure.
data Pointer to a DMA-capable buffer of data to be sent.
(See fxMemAlloc for allocating DMA-capable buffers)
data byte size |Data size in bytes of 'data' parameter above.

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_ADDRESS
FX_ERR_INVALID_LOCAL_NODE_ID
FX_ERR_INVALID_PARAMETER
FX_ERR_BUS_RESET_DETECT
FX_ERR_INTERNAL_ERROR

Synopsis
FXReturnCode fxAsyTrmWriteBlockRequest (
FXBusHandle handle,
uint32 t speed,
uint32 t nodelD,
uint32 t transactionLabel,
uint32 t retryCode,
const FXAddress64* offset,
uint8 t* data,
uint32 t data byte size

)

10.5.2.2.3 fxAsyTrmWriteResponse

Description

This function can be used to transmit a single Write Response packet.

Parameters

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

157

1394 APl Reference

handle Reference handle to the bus to control.
(see fxCreateBusHandle)
speed Transmission speed. See Speed Codes for a valid value.
nodelD Destination node ID to which a new packet is sent.
transactionLab [Transaction Label field in the header.
el
retryCode Retry Code field in the header.
responseCode Response Code field in the header.

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_LOCAL_NODE_ID
FX_ERR_INVALID_PARAMETER
FX_ERR_BUS_RESET_DETECT
FX_ERR_INTERNAL_ERROR

Synopsis

FXReturnCode fxAsyTrmWriteResponse (
FXBusHandle handle,
uint32 t speed,
uint32 t nodelD,
uint32 t transactionLabel,
uint32 t retryCode,
uint32 t responseCode

)

10.5.2.2.4 fxAsyTrmReadQuadletRequest

Description

This function can be used to transmit a single Read Quadlet Request packet.

Parameters
handle Reference handle to the bus to control.
(see fxCreateBusHandle)
speed Transmission speed. See Speed Codes for a valid value.
nodelID Destination node ID to which a new packet is sent.
transactionlLab |Transaction Label field in the header.
el
retryCode Retry Code field in the header.
offset Pointer to FXAddress64 structure.

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_ADDRESS
FX_ERR_INVALID_LOCAL_NODE_ID
FX_ERR_INVALID_PARAMETER
FX_ERR_BUS_RESET_DETECT
FX_ERR_INTERNAL_ERROR

158

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

1394 APl Reference

Synopsis

FXReturnCode fxAsyTrmReadQuadletRequest (
FXBusHandle handle,
uint32 t speed,
uint32 t nodelD,
uint32 t transactionLabel,
uint32 t retryCode,
const FXAddress64* offset

)
10.5.2.2.5 fxAsyTrmReadBlockRequest

Description
This function can be used to transmit a single Read Block Request packet.

Parameters
handle Reference handle to the bus to control.
(see fxCreateBusHandle)
speed Transmission speed. See Speed Codes for a valid value.
nodelID Destination node ID to which a new packet is sent.

transactionLab |Transaction Label field in the header.

el
retryCode Retry Code field in the header.
offset Pointer to FXAddress64 structure.

req byte size Data Length field in the header.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_ADDRESS
FX_ERR_INVALID_LOCAL_NODE_ID
FX_ERR_INVALID_PARAMETER
FX_ERR_BUS_RESET_DETECT
FX_ERR_INTERNAL_ERROR

Synopsis
FXReturnCode fxAsyTrmReadBlockRequest (
FXBusHandle handle,
uint32 t speed,
uint32 t nodelD,
uint32 t transactionLabel,
uint32 t retryCode,
const FXAddress64* offset,
uint32 t req byte size

)
10.5.2.2.6 fxAsyTrmReadQuadletResponse

Description
This function can be used to transmit a single Read Quadlet Response packet.

Parameters

handle Reference handle to the bus to control.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 159

1394 APl Reference

(see fxCreateBusHandle)

speed Transmission speed. See Speed Codes for a valid value.
nodelD Destination node ID to which a new packet is sent.
transactionLabe|Transaction Label field in the header.

1

retryCode Retry Code field in the header.

responseCode Response Code field in the header.

data Quadlet data to be sent.

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_LOCAL_NODE_ID
FX_ERR_INVALID_PARAMETER
FX_ERR_BUS_RESET_DETECT
FX_ERR_INTERNAL_ERROR

Synopsis

FXReturnCode fxAsyTrmReadQuadletResponse (
FXBusHandle handle,
uint32 t speed,
uint32 t nodelD,
uint32 t transactionlLabel,
uint32 t retryCode,
uint32 t responseCode,
uint32 t data

)

10.5.2.2.7 fxAsyTrmReadBlockResponse

Description

This function can be used to transmit a single Read Block Response packet.

Parameters
handle Reference handle to the bus to control.
(see fxCreateBusHandle)
speed Transmission speed. See Speed Codes for a valid value.
nodelD Destination node ID to which a new packet is sent.
transactionLab |Transaction Label field in the header.
el
retryCode Retry Code field in the header.
responseCode Response Code field in the header.
data Pointer to a DMA-capable buffer of data to be sent.
(See fxMemAlloc for allocating DMA-capable buffers)
data byte size [Data size in bytes of 'data' parameter above.

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE

160

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

1394 APl Reference

FX_ERR_INVALID_LOCAL_NODE_ID
FX_ERR_INVALID_PARAMETER
FX_ERR_BUS_RESET_DETECT
FX_ERR_INTERNAL_ERROR

Synopsis

FXReturnCode fxAsyTrmReadBlockResponse (
FXBusHandle handle,
uint32 t speed,
uint32 t nodelD,
uint32 t transactionLabel,
uint32 t retryCode,
uint32 t responseCode,
uint8 t* data,
uint32 t data byte size

)

10.5.2.2.8 fxAsyTrmLockRequest

Description

This function can be used to transmit a single Lock Request packet.

Parameters
handle Reference handle to the bus to control.
(see fxCreateBusHandle)
speed Transmission speed. See Speed Codes for a valid value.
nodelD Destination node ID to which a new packet is sent.
transactionlLab [Transaction Label field in the header.
el
retryCode Retry Code field in the header.
offset Pointer to FXAddress64 structure.
extendedTcode [Extended tCode field in the header.
data Pointer to a DMA-capable buffer of data to be sent.
(See fxMemAlloc for allocating DMA-capable buffers)
data byte size |Data size in bytes of 'data' parameter above.

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_ADDRESS
FX_ERR_INVALID_LOCAL_NODE_ID
FX_ERR_INVALID_PARAMETER
FX_ERR_BUS_RESET_DETECT
FX_ERR_INTERNAL_ERROR

Synopsis
FXReturnCode fxAsyTrmLockRequest (
FXBusHandle handle,
uint32 t speed,
uint32 t nodelD,
uint32 t transactionLabel,
uint32 t retryCode,
const FXAddress64* offset,

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 161

1394 APl Reference

uint32 t extendedTcode,
uint8 t* data,
uint32 t data byte size

)
10.5.2.2.9 fxAsyTrmStream

Description
This function can be used to transmit a single Asynchronous Stream packet.

Parameters
handle Reference handle to the bus to control.
(see fxCreateBusHandle)
speed Transmission speed. See Speed Codes for a valid value.
tag Tag field in the header.
channelNum Channel field in the header.
sy Sy field in the header.
data Pointer to a DMA-capable buffer of data to be sent.
(See fxMemAlloc for allocating DMA-capable buffers)
data byte size[Data size in bytes of 'data' parameter above.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_LOCAL_NODE_ID
FX_ERR_INVALID_PARAMETER
FX_ERR_BUS_RESET_DETECT
FX_ERR_INTERNAL_ERROR

Synopsis
FXReturnCode fxAsyTrmStream (
FXBusHandle handle,
uint32 t speed,
uint32 t tag,
uint32 t channelNum,
uint32 t Sy,
uint8 t* data,
uint32 t data byte size

)
10.5.2.2.10 fxAsyTrmLockResponse

Description
This function can be used to transmit a single Lock Response packet.

Parameters
handle Reference handle to the bus to control.

(see fxCreateBusHandle)
speed Transmission speed. See Speed Codes for a valid value.
nodelD Destination node ID to which a new packet is sent.
transactionlLab |Transaction Label field in the header.
el

162 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

1394 APl Reference

retryCode Retry Code field in the header.

responseCode Response Code field in the header.

extendedTcode Extended tCode field in the header.

data Pointer to a DMA-capable buffer of data to be sent.

(See fxMemAlloc for allocating DMA-capable buffers)

data byte size

Data size in bytes of 'data' parameter above.

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_LOCAL_NODE_ID
FX_ERR_INVALID_PARAMETER
FX_ERR_BUS_RESET_DETECT
FX_ERR_INTERNAL_ERROR

Synopsis

FXReturnCode fxAsyTrmLockResponse (
FXBusHandle handle,
uint32 t speed,
uint32 t nodelD,
uint32 t transactionLabel,
uint32 t retryCode,
uint32 t responseCode,
uint32 t extendedTcode,
uint8 t* data,
uint32 t data byte size

)

10.5.2.3. PHY Packets and registers
10.5.2.3.1 fxReadLocalPhyBaseReg

Description

This function can be used to read a local PHY register value.

Parameters
handle Reference handle to the bus to control.
(see fxCreateBusHandle)
offset Register offset.
value Pointer to a buffer to which a register value is returned.

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER
FX_ERR_LOW_LVL_PHY_REG_ACCESS_TIMEOUT
FX_ERR_INTERNAL_ERROR

Synopsis

FXReturnCode fxReadLocalPhyRegister (
FXBusHandle handle,
uint8 t offset,

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

163

1394 APl Reference

uint8 t* value

)
10.5.2.3.2 fxReadLocalPhyPageReg

Description
This function can be used to read local phy register value.

Parameters

handle Reference handle to the bus to control.
(see fxCreateBusHandle)

port PHY port to select.

page Page number to select.

offset Register offset within selected page. Please note that the
first byte in the page registers has offset 8.

value Pointer to a buffer to which a register value is returned.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER
FX_ERR_LOW_LVL_PHY_REG_ACCESS_TIMEOUT
FX_ERR_INTERNAL_ERROR

Synopsis

FXReturnCode fxReadLocalPhyPageReg (
FXBusHandle handle,
uint8 t port,
uint8 t page,
uint8 t offset,
uint8 t* value

)
10.5.2.3.3 fxWriteLocalPhyBaseReg

Description
This function can be used to write data to local PHY register.

Parameters

handle Reference handle to the bus to control.
(see fxCreateBusHandle)

offset Register offset.

value Data to be written to the register.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER
FX_ERR_LOW_LVL_PHY_REG_ACCESS_TIMEOUT
FX_ERR_INTERNAL_ERROR

Synopsis

164 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

1394 APl Reference

FXReturnCode fxWriteLocalPhyRegister (

FXBusHandle handle,
uint8 t offset,
uint8 t value

)
10.5.2.3.4 fxWriteLocalPhyPageReg

Description
This function can be used to write data to local phy register.

Parameters

handle Reference handle to the bus to control.
(see fxCreateBusHandle)

port PHY port to select.

page Page to select.

offset Register offset within selected page. Please note that the
first byte in the page registers has offset 8.

value Data to be written to the register.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the

function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER
FX_ERR_LOW_LVL_PHY REG_ACCESS_TIMEOUT
FX_ERR_INTERNAL_ERROR

Synopsis
FXReturnCode fxWriteLocalPhyRegister (
FXBusHandle handle,
uint8 t port,
uint8 t page,
uint8 t offset,
uint8 t value

)
10.5.2.3.5 fxReadRemotePhyPageReg

Description
This function can be used to read a page register from remote node.

Parameters

busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)

generation Set this value to the current bus generation number. (see
fxGetBusGeneration)

nodeId Node ID of destination device.

port Specify port number to read page register of.

page Specify page number to read.

reg Specify register index to read. The register offset will Dbe
calculated as 0x8 + reg.

val Specify a buffer to retrieve the value in.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 165

1394 APl Reference

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_NORMAL
FX_ERR_INVALID_HANDLE
FX_ERR_LOW_LVL_RECEIVE_TIMEOUT

Synopsis

FXReturnCode fxReadRemotePhyPageReqg (
FXBusHandle busHandle,
uint32 t generation,
uint32 t nodeld,
uint8 t port,
uint8 t page,
uintl6 t reqg,
uint8 t* val

)
10.5.2.3.6 fxReadRemotePhyBaseReg

Description
This function can be used to read a base register from remote node.

Parameters

busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)

generation Set this value to the current bus generation number. (see
fxGetBusGeneration)

nodeId Node ID of destination device.

reg Specify register index to read.

val Specify a buffer to retrieve the value in.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_NORMAL
FX_ERR_INVALID_HANDLE
FX_ERR_LOW_LVL_RECEIVE_TIMEOUT

Synopsis

FXReturnCode fxReadRemotePhyBaseReqg (
FXBusHandle busHandle,
uint32 t generation,
uint32 t nodeId,
uintl6 t reqg,
uint8 t* val

)
10.5.2.3.7 &xPhyRemoteCommand

Description
This function can be used to perform a PHY Remote Command on a remote node.

Parameters

166 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

1394 APl Reference

busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)

generation Set this value to the current bus generation number. (see
fxGetBusGeneration)

nodeId Node ID of destination device.

port Specify the port number to select.

command Specify the command to perform (see PHY Remote Commands)

confirmationF1|Specify one or more PHY Confirmation Flags

ags

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_NORMAL

Synopsis

FXReturnCode fxPhyRemoteCommand (
FXBusHandle busHandle,
uint32 t generation,
uint32 t nodeId,
uint8 t port,
uint8 t command,
uint8 t* confirmationFlags

)
10.5.2.3.8 fxPhySetForceRoot

Description

This function can be used to transmit a PHY Configuration packet to set the specified nodeld as root. This
function will not issue a bus reset.

Parameters

busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)

generation Set this value to the current bus generation number. (see
fxGetBusGeneration)

nodeId Node ID to set as root.

Return Codes

This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_NORMAL
FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER
FX_ERR_LOW_LVL_RECEIVE_TIMEOUT
FX_ERR_BUS_RESET_DETECT
FX_ERR_LOW_LVL_PHY_MAX_OUTSTANDING

Synopsis

FXReturnCode fxPhySetForceRoot (
FXBusHandle busHandle,
uint32 t generation,

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 167

1394 APl Reference

uint32 t nodeld
)

10.5.2.3.9 xPhySetGapCount

Description
This function can be used to transmit a PHY Configuration packet to set the gap count to the specified value.
This function will not issue a bus reset.

Parameters

busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)

generation Set this value to the current bus generation number. (see
fxGetBusGeneration)

gapCount Gap count value to set as part of the PHY configuration packet.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_NORMAL
FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER
FX_ERR_LOW_LVL_RECEIVE_TIMEOUT
FX_ERR_BUS_RESET_DETECT
FX_ERR_LOW_LVL_PHY_MAX_OUTSTANDING

Synopsis

FXReturnCode fxPhySetForceRoot (
FXBusHandle busHandle,
uint32 t generation,
uint32 t gapCount

)
10.5.2.3.10 fxPingRemoteNode

Description
This function can be used to perform a PHY Ping operation to a remote node.

Parameters

busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)

generation Set this value to the current bus generation number. (see
fxGetBusGeneration)

nodeId Node ID of destination device.

time User allocated buffer that will be filled with the ping time
measured according to 1394 spec.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_NORMAL
FX_ERR_INVALID_HANDLE
FX_ERR_INVALID_PARAMETER
FX_ERR_LOW_LVL_RECEIVE_TIMEOUT
FX_ERR_BUS_RESET_DETECT

168 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

1394 APl Reference

FX_ERR_LOW_LVL_PHY_MAX_OUTSTANDING
FX_ERR_NOT_IMPLEMENTED

Synopsis

FXReturnCode fxPingRemoteNode (
FXBusHandle busHandle,
uint32 t generation,
uint32 t nodeld,
uint32 tx* time

)
10.5.2.3.11 fxPhyPacketSetRcvCallback

Description
This function can be used to register a user-defined callback function that is called for each PHY packet

received. Please note that Self ID packets received during the Self Identification phase will not be received by
this function.

Parameters

busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)

callback Function pointer of the user-defined function that will be
called for each PHY packet received. (see
FXPhyPacketRcvCallback)

userData User provided data that will be passed to the user callback
each time it is called.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the

function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_NORMAL

Synopsis

FXReturnCode fxPhyPacketSetRcvCallback(
FXBusHandle busHandle,
FXPhyPacketRcvCallback callback,
void* userData

)
10.5.2.3.12 fxPhyPacketTrmRaw

Description
This function can be used to transmit a PHY packet in RAW form.

Parameters
busHandle Reference handle to the bus to control.
(see fxCreateBusHandle)
phyPacket [2] Contents of the PHY packet to transmit.
speedCode Speed Code to use for the PHY packet transmission.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the

function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_NORMAL

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 169

1394 APl Reference

Synopsis

FXReturnCode fxPhyPacketTrmRaw (
FXBusHandle busHandle,
uint32 t phyPacket[2],
uint32 t speedCode

)7

10.5.2.4. Topology Functions
10.5.2.4.1 fxGetSelfldData

Description

This function can be used to obtain the raw selflD data for all nodes on the bus. Data returned contains all the
Self ID packets as received on the bus back to back. The theoretical maximum size equals 63 devices times
4 packets times 2 quadlets.

Parameters

handle Reference handle to the bus to control.
(see fxCreateBusHandle)

generation Set this value to the current bus generation number. (see
fxGetBusGeneration)

maxSize Maximum number of quadlets the API should write to buffer

size Return the actual number of quadlets written to buffer.

buffer User allocated buffer that can hold at least maxSize quadlets.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_NORMAL
FX_ERR_INVALID_HANDLE
FX_ERR_LOW_LVL_RECEIVE_TIMEOUT
FX_ERR_INVALID_PARAMETER
FX_ERR_LICENSE_MODULE
FX_ERR_LICENSE_EXPIRED
FX_ERR_FIRESTACK_DEMO_TIMEOUT

Synopsis

FXReturnCode fxGetSelfIdData (
FXBusHandle handle,
uint32 t generation,
size t maxSize,
size t* size,
uint32 t* buffer

)

10.5.2.4.2 fxlssueBusReset

Description
This function can be used to issue a bus reset. The bus reset is generated by writing to the local PHY
registers and returns immediately after the register write actions completed.

Parameters

handle Reference handle to the bus to control.

(see fxCreateBusHandle)

170 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

1394 APl Reference

shortBusReset |This parameter can be used as follows:

0: Issue a short bus reset by writing the ISBR PHY register
other values: Issue a long bus reset by writing the IBR PHY
register

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_NORMAL
FX_ERR_INVALID_HANDLE
FX_ERR_LICENSE_MODULE
FX_ERR_LICENSE_EXPIRED
FX_ERR_FIRESTACK_DEMO_TIMEOUT

Synopsis

FXReturnCode fxIssueBusReset (
FXBusHandle busHandle,
uint32 t shortBusReset

)

10.5.3. Type Definitions
10.5.3.1. FXAsyRcvPacketCallback

Description
This function definition is used to specify a callback function that will be called when the stack receives an
incoming asynchronous packet.

Parameters
busHandle Reference handle to the bus to control. (see fxCreateBusHandle)
userData Pointer to the data specified in fxAsyRcvSetPacketCallback.
packet Data structure that holds the packet details. (see
FXAsyRcvPacket)

Synopsis
typedef bool t (*FXAsyRcvPacketCallback) (

FXBusHandle busHandle,

void* userData,

FXAsyRcvPacket* packet

)7

10.5.3.2. FXPhyPacketRcvCallback

Description
This function definition is used to specify a callback function that will be called when the stack receives an
incoming PHY packet.

Parameters

busHandle Reference handle to the bus to control. (see fxCreateBusHandle)

phyPacket Data quadlet of the PHY packet received. The second quadlet of
the original packet is the inverse of the first quadlet by
definition and therefore is not communicated to the user.

speedCode Speed code of the PHY packet received

userData Data provided by user when this callback function was
registered.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 171

1394 APl Reference

Synopsis
typedef void (*FXPhyPacketRcvCallback) (
FXBusHandle busHandle,
uint32 t phyPacket,
uint32 t speedCode,
void* userData

)7
10.5.4. Structures
10.5.4.1. FXAsyRcvPacket

Description
This structure defines details of a received Asynchronous Packet.

Members
generation Bus generation number that corresponds to the packet
speed Speed code of the packet (see Speed Codes)
ackCode The IEEE-1394 ack code associated with the packet.
header Data pointer to memory location holding the packet header
contents. This pointer is only valid during execution of the
callback.
headerSize Size of the header expressed in bytes.
data Data pointer to memory location holding the packet data
contents. This pointer is only valid during execution of the
callback.
dataSize Size of the data expressed in bytes.
Synopsis
struct FXAsyRcvPacket
{
uint32 t generation;
uint32 t speed;
uint32 t ackCode;
void* header;
size t headerSize;
void* data;
size t dataSize;

};
10.5.5. Constants
10.5.5.1. Error Codes

The following values may be returned by functions.

FX ERR_LOW_LVL_RECEIVE_TIMEOUT

FX ERR_LOW_LVL_PHY_REG_ACCESS_TIMEOUT
FX ERR_LOW_LVL_PHY_MAX OUTSTANDING
FX ERR_LOW_LVL_PHY_FAILED

10.5.5.2. PHY Remote Commands

FX_PHY CMD NOP 0
FX_PHY CMD TX DISABLE NOTIFY 1
FX_PHY CMD_ INIT SUSPEND 2

172 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

1394 APl Reference

FX_PHY CMD PORT CLEAR PORT 4
FX_PHY CMD PORT ENABLE 5
FX_PHY CMD PORT RESUME 6
FX_PHY CMDEXT NOP 7
FX_PHY CMDEXT PORT INIT STANDBY 8
FX_PHY CMDEXT PORT RESTORE 9

10.5.5.3. PHY Confirmation Flags
FX_ PHY REMOTECONF BIT OK 0x01
FX_ PHY REMOTECONF BIT DISABLED 0x02
FX_ PHY REMOTECONF BIT BIAS 0x04
FX_PHY REMOTECONF BIT CONNECTED 0x08
FX_ PHY REMOTECONF BIT FAULT 0x10
FX_ PHY REMOTECONF BIT STANDBYFAULT 0x20

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 173

Time Input Device APl Reference

Chapter 11. Time Input Device APl Reference

11.1. Functions

The External Time Input functions allow the user to control any supported time input device. For example a
FireTrac card may contain one time input even though it contains three busses. All three buses will then be
physically connected to this time input and therefore the time input is controlled as a separate device from

the FireStack API.

The FXTimelnputinfo structure contains the required PCI information to determine which time input device is
physically located on the same PCI device as any busses the user is controlling.

The following steps should be carried out to setup a time input device for time synchronization:

1. Create a time input device handle using fxCreateTimelnputHandle

2. Register a user-defined callback function that will be called whenever the status changes. This can be done
with the function xSetTimelnputStatusCallback.

3. Set the time input mode and enable external time input by using the function fxSetTimelnputMode.

4. If the time has been synchronized or if synchronization failed, the user callback status function will be
called. If synchronization was successful, the user can get current time information by using the function
xGetTimelnputStatus.

11.1.1. fxGetNumberOfTimelnputs

Description
This function can be used to determine how many time input devices are available. Typically the user will call
xGetTimelnputinfoList after this function to get more information per time input device.

Parameters

numTimeInputs |Returns the number of time inputs

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

Synopsis
FXReturnCode fxGetNumberOfTimelInputs (
uint32 t* numTimelInputs

)

11.1.2. fxGetTimelnputinfoList

Description
This function can be used to fill a user-allocated list of FXTimelnputinfo structures.

Parameters

list User-allocated list that will be filled with time input
information. For details, please refer to FXTimeInputInfo.

maxSize The maximum number of FXTimelInputInfo items the FireStack is
allowed to return.

size The actual number of FXTimeInputInfo items the FireStack has
returned.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

174

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

Time Input Device APl Reference

FX_ERR_INVALID_PARAMETER

Synopsis

FXReturnCode fxGetTimeInputInfolList (
FXTimeInputInfo* list,
uint32 t maxSize,

uint32 t* size

)

11.1.3. fxCreateTimelnputHandle

Description

This function can be used to open a time input device and get a handle to it. The user has the option to either
manually create an FXTimelnputinfo structure with valid information or to use one of the FXTimelnputinfo
structs returned by fxGetTimelnputinfoList.

When opening a handle the user may choose to specify a list of settings by providing the function with an
array of FXSetting structures. Available settings depend on various aspects like operating system used,
FireStack modules included in this specific FireStack release and higher-level protocols included in this
specific FireStack release. Whenever a module offers user-configurable settings it will include them in the
module's documentation.

Most developers will want to start using this function without specifying any settings until they learn about a
specific setting that they may find useful somewhere else in this manual.

Parameters

info FXTimeInputInfo structure of the time input device to open.
Missing fields will be filled in on successful open.

settingList An array of struct type FXSetting that allows providing
settings when creating a handle or one can set this parameter
to zero to leave out settings.

size The number of settings in the provided settinglList array.

handle The returned handle to the time input device.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_PARAMETER
FX_ERR_DEVICE_INIT_FAIL
FX_ERR_NEEDS_FWUPDATE

Synopsis

FXReturnCode fxCreateTimeInputHandle (
FXTimeInputInfo* info,
FXSetting* settinglList,
size t size,
FXTimeInputHandle* handle

11.1.4. fxCloseTimelnputHandle

Description
This function can be used to close a time input device.

Parameters

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 175

Time Input Device APl Reference

handle The handle of the time input device to close.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_PARAMETER
FX_ERR_DEVICE_CLOSE_FAIL

Synopsis
FXReturnCode fxCloseTimeInputHandle (
FXTimeInputHandle handle

)

11.1.5. fxSetTimelnputMode

Description
Select the desired mode for the time input device.

Parameters
handle Handle to the time input device to control.
mode The desired input time mode.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_FIRESTACK_NOT_INITIALIZED
FX_ERR_INVALID_TIMEMODE
FX_ERR_INVALID_PARAMETER
FX_ERR_TIMEMODE_NOT_SUPPORTED

Synopsis

FXReturnCode fxSetTimeInputMode (
FXTimeInputHandle handle,
uint32 t mode

11.1.6. fxSetTimelnputCurrentYear

Description
Set the current year. This can be useful for time modes that do not provide this information.

Parameters
handle Handle to the time input device to control.
year The current year.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_PARAMETER
FX_ERR_INVALID_TIMEMODE

176

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

Time Input Device APl Reference

Synopsis

FXReturnCode fxSetTimeInputCurrentYear (
FXTimeInputHandle handle,
uint32 t year

) 7

11.1.7. fxSetTimelnputFreeRunningOffset

Description
Set the current time offset in free running mode.

Parameters

handle Handle to the time input device to control.

seconds Starting offset for free running time, such as the number of
seconds since 01/01/1970.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_PARAMETER
FX_ERR_INVALID_TIMEMODE

Synopsis

FXReturnCode fxSetTimeInputFreeRunningOffset (
FXTimeInputHandle handle,
uint32 t seconds

) 7

11.1.8. fxGetTimelnputStatus

Description
This function can be used to get the current status of a time input device.

Parameters

handle Handle to the time input device to get the status from.

status Returns the status. For more details, refer to
FXTimeInputStatus.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function ixGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_PARAMETER
FX_ERR_INVALID_TIMEVALUE

Synopsis

FXReturnCode fxGetTimeInputStatus (
FXTimeInputHandle handle,
FXTimeInputStatus* status

)

11.1.9. fxSetTimelnputStatusCallback

Description
Set a function to be called each time the status of the time input module changes.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 177

Time Input Device APl Reference

Parameters

handle Handle to the time input device to set the callback for.

callback Pointer to user-defined callback function.

userData Pointer to a user-specified data. The pointer will be carried
to user callback functions. See also FXTimeInputStatusCallback.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_PARAMETER

Synopsis

FXReturnCode fxSetTimeInputStatusCallback(
FXTimeInputHandle handle,
FXTimeInputStatusCallback callback,
void* userData

)

11.1.10. fxSetTimelnputSecondCallback

Description
Set a function to be called each time the seconds counter is incremented.

Parameters

handle Handle to the time input device to set the callback for.

callback Pointer to user-defined callback function.

userData Pointer to a user-specified data. The pointer will be carried
to user callback functions. See also
FXTimeInputSecondsCallback.

Return Codes
This function returns zero or greater upon success. A negative return value indicates an error. Please use the
function fxGetErrorMessage to lookup descriptions corresponding to negative return values.

FX_ERR_INVALID_PARAMETER

Synopsis

FXReturnCode fxSetTimeInputStatusCallback(
FXTimeInputHandle handle,
FXTimeInputSecondCallback callback,
voidx* userData

178 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

Time Input Device APl Reference

11.2. Type Definitions
11.2.1. FXTimelnputHandle

FXTimeInputHandle [Reference handle to the time input device to control.

(see fxCreateTimeInputHandle)

11.2.2. FXTimelnputStatusCallback

Description

This type definition is used to specify a callback function that can be registered as status change callback
function for a time input device by using the function fxSetTimelnputStatusCallback.

Parameters
handle Reference handle to the bus to control.
(see fxCreateBusHandle)
userData Pointer to the data specified in FxSetTimeInputStatusCallback.
statusCode The new status of the time input device.
Synopsis

typedef void (*FXTimeInputStatusCallback) (
FXTimeInputHandle handle,
void* userData,
uint32 t statusCode

)7

11.2.3. FXTimelnputSecondCallback

Description

This type definition is used to specify a callback function that can be registered as a seconds counter
increment callback function for a time input device by using the function fxSetTimelnputSecondCallback.

Parameters
handle Reference handle to the bus to control.
(see fxCreateBusHandle)
userData Pointer to the data specified in FxSetTimeInputSecondCallback.
Synopsis

typedef void (*FXTimeInputSecondCallback) (
FXTimeInputHandle handle,
void* userData

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 179

Time Input Device APl Reference

11.3. Structures
11.3.1. FXTimelnputinfo

Description

This structure defines data members that together provide sufficient information to identify a device. When
used in combination with fxCreateTimelnputHandle sufficient information needs to be filled in to identify the
device to be opened, all other fields may be set to -1.

For example if a user just wants to open the first time input device found in the system it is sufficient to set
deviceld to 0 and the remaining fields to -1 when calling fxCreateTimelnputHandle.

When a user wants to open a specific PCI physical location all PCI fields should be filled in correctly and all
other fields need to be set to -1 when calling fxCreateTimelnputHandle.

Simplest way to use this structure to open a device is to let the FireStack fill in the fields. This can be done
by using the function fxGetTimelnputinfoList.

Members

deviceld Device identification number. Unique for each
time input device connected to the system. This
number is not related to physical configuration
but picked by software.

pciBus PCI bus number for PCI devices, -1 otherwise.
Indicates the PCI bus number the time input
device is connected to. Numbering is defined by
the physical PCI bus topology.

pciDevice PCI device number for PCI devices, -1 otherwise.
Numbering is defined by the physical PCI bus
topology.

pciFunction PCI function for PCI devices, -1 otherwise.

In case of a multi-function PCI device, this
field holds the function index of the time input
module.

pciRevision PCI Revision for PCI devices, -1 otherwise.
In case of FireTrac devices this represents the
firmware version.

subSecondResolution Time stamps are split up in a number of seconds
and a number of sub-second increments. This
field defines the resolution of the sub-second
increments in nano seconds. (1000 means sub-

seconds expressed in micro seconds)

Synopsis
typedef struct ({
/* Identification */
int32 t devicelId;

/* PCI Physical location */

int32 t pciBus;
int32 t pciDevice;
int32 t pciFunction;

/* Information */
int32 t pciRevision;

180

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

Time Input Device APl Reference

/* Device Capability Information */
uint32 t subSecondResolution;
} FXTimeInputInfo;

11.3.2. FXTimelnputStatus

Description
This structure defines data members that reflect the current status of a time input device.

Members

statusCode Current status of the device

mode The input time mode used

seconds Number of seconds that have passed since 01/01/1970 assuming
the input time uses UTC.

subSeconds Number of sub-second intervals that have passed since the last
seconds increment. For the resolution of sub-seconds, please
see FXTimeInputInfo structure.

Synopsis

typedef struct {
uint32 t statusCode;
uint32 t mode;
uint32 t seconds;
uint32 t subSeconds;

} FXTimeInputStatus;

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 181

Time Input Device APl Reference

11.4. Constants
11.4.1. Time Input Mode

The Time Input Modes supported depend on the particular hardware model used. In case
xSetTimelnputMode() is called with an unsupported mode it will indicate this by returning

FX_ ERR_TIMEMODE_NOT_SUPPORTED.

The following table shows the different modes that are available to the user. Depending on which mode is
chosen one or more options from the mode options table may be OR-ed together with the selected mode.

FX TIMEINPUTMODE FREERUNNING

Free running mode uses the internal clock
without any synchronization to an external
source. This mode allows the user to set the
current time to a specific value by using the
function fxSetTimeInputFreeRunningOffset ().

FX TIMEINPUTMODE IRIG

Synchronize to an IRIG-B time source without
IEEE-1344 extensions. This mode allows the
user to specify the current year by using the
function fxSetTimeInputCurrentYear ().

By default this mode selects the modulated
IRIG-B122 format which can be overridden by
using either FX TIMEINPUTMODE OPTION TTL or
FX TIMEINPUTMODE OPTION RS422.

FX TIMEINPUTMODE IRIG 1344

Synchronize to an IRIG-B time source with
IEEE-1344 extensions. Using this mode the
year will be used from the time source.

By default this mode selects the modulated
IRIG-B122 format which can be overridden by
using either FX TIMEINPUTMODE OPTION TTL or
FX TIMEINPUTMODE OPTION RS422.

The following mode options can be OR-ed with each other and one of the modes above to define the complete

mode to be used:

FX TIMEINPUTMODE OPTION TTL

This option changes the IRIG format from B-
122 to B-002 TTL. By default, this option
selects non-inverted active-high signaling
which can be overridden by setting the

FX TIMEINPUTMODE OPTION INVERTED option.
This option is only allowed in combination
with FX TIMEINPUTMODE OPTION IRIG or
FX_TIMEINPUTMODE OPTION IRIG 1344.

FX TIMEINPUTMODE OPTION RS422

This option changes the IRIG format from B-
122 to B-002 RS422. By default, this option
selects non-inverted active-high signaling
which can be overridden by setting the

FX TIMEINPUTMODE OPTION INVERTED option.
This option is only allowed in combination
with FX TIMEINPUTMODE OPTION IRIG or
FX_TIMEINPUTMODE OPTION IRIG 1344.

FX TIMEINPUTMODE OPTION INVERTE
D

This option changes the signaling from non-
inverted active high to inverted active-low.
This option is only allowed in combination
with FX TIMEINPUTMODE OPTION TTL or

FX TIMEINPUTMODE OPTION RS422.

182

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

Time Input Device APl Reference

Only the following combinations of options are allowed:

|Free Running |FX TIMEINPUTMODE FREERUNNING
IRIG-B122 FX TIMEINPUTMODE IRIG
IRIG-B122-1344 FX TIMEINPUTMODE IRIG 1344
IRIG-B002-TTL FX TIMEINPUTMODE IRIG

| FX TIMEINPUTMODE OPTION TTL
IRIG-B002-1344-TTL FX TIMEINPUTMODE IRIG 1344

| FX TIMEINPUTMODE OPTION TTL
IRIG-B002-TTL Inverted Polarity FX TIMEINPUTMODE IRIG

| FX TIMEINPUTMODE OPTION TTL

| FX TIMEINPUTMODE OPTION INVERTED
IRIG-B002-1344-TTL Inverted Polarity FX TIMEINPUTMODE IRIG 1344

| FX TIMEINPUTMODE OPTION TTL

| FX TIMEINPUTMODE OPTION INVERTED

IRIG-B002-RS422 FX TIMEINPUTMODE IRIG

| FX TIMEINPUTMODE OPTION RS422
IRIG-B002-1344-RS422 FX TIMEINPUTMODE IRIG 1344

| FX TIMEINPUTMODE OPTION RS422
IRIG-B002-RS422 Inverted Polarity FX TIMEINPUTMODE IRIG

| FX_TIMEINPUTMODE OPTION RS422

| FX _TIMEINPUTMODE OPTION INVERTED
IRIG-B002-1344-RS422 Inverted Polarity FX TIMEINPUTMODE IRIG 1344

| FX_TIMEINPUTMODE OPTION RS422

| FX_TIMEINPUTMODE OPTION INVERTED

For backwards compatibility, the following alternative mode definitions are also supported:

FX TIMEINPUTMODE_IRIG B122 Exactly the same as FX TIMEINPUTMODE IRIG
FX TIMEINPUTMODE_IRIG_B122_1344 Exactly the same as FX TIMEINPUTMODE IRIG 1344

11.4.2. Status Codes

FX TIMEINPUTSTATUS INVALID No time input source signal has been
detected

FX TIMEINPUTSTATUS FREERUNNING Current time is free running and not
synced to an IRIG source

FX TIMEINPUTSTATUS SYNCED Current time is synchronized to an IRIG
source

FX TIMEINPUTSTATUS SYNCEDACCURATE Current time is synchronized to a stable
IRIG source

11.4.3. Error Codes

The following values may be returned by Time Input Control functions.

FX_ ERR_INVALID_TIMEVALUE
FX_ERR_INVALID_TIMEMODE

FX ERR_INVALID_TIMEFORMAT

FX ERR_TIMEMODE_NOT_SUPPORTED

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 183

Examples

Chapter 12. Examples

The software package comes with several examples to illustrate how each module can be used to perform
certain tasks on the 1394 bus. This section provides a description of each of the examples. Please be aware
that to be able to run an example one needs a valid license for the module that is demonstrated by the
example. It is also possible to run the examples in demo mode for a maximum of 15 minutes. In this case
please make sure that no license certificate is present in the flash memory of the board.

For each example a compiled binary is provided that can be run as-is. It is also possible to build the
examples from source. Since it is not practical to provide a project file for each possible development
environment used by our customers, we decided to provide a configuration file that can be used by CMake.
CMake is freely available from the following website (http://www.cmake.org) and many operating systems
include it in their package managers.

184 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

http://www.cmake.org

Examples

12.1. Inbound Transactions

12.1.1. Inbound Transaction Monitor

The Inbound Transaction Monitor demonstrates functions defined in section Inbound Transactions.

When the demo application starts, the console should display a welcome message and a menu. With help of
this menu you can give simple commands to evaluate the functionality of the Inbound Transaction API
function set. The initial display should look like the following:

This example demonstrates the two methods of handling Inbound Transactions:
Map Local Memory and Transaction Handler.
You are supposed to use another device to perform the read/write/lock requests

Map Local Memory is demonstrated by letting you enter a StartAddress and Size.
The address 1is entered in HexaDecimal and the size in decimal.For this example
0xFFFF00000000 is added to the StartAddress, so entering a value of F0000400
results in a start address of OxFFFFF0000400

Bus opened

Region commands
<address> <size> map local memory region
map transaction
transaction mode
No repsponse,

Address error,

d:
c:

<nlel|d|tlalc> n: Normal,
Data error, t:

Conflict Error

e:
a:

Type Error

Generic commands

quit demo
verbose on

Map Local Memory Region

The command

ml <address> <size>

creates a new memory mapped address range that is exposed onto the 1394 bus. FireStack autonomously
transmits a response packet when it receives a request packet with matching address. If a write request
packet with the valid address is received, the FireStack will update the local memory with the data payload of
the received packet. Receiving a read request packet will transmit a response packet with data stored in the
local memory.

Map Local Memory is demonstrated by letting you enter a start <address> and <size>. The address is
entered in hexadecimal and the size in decimal. For this example OxFFFF00000000 is added to the start
address, so entering a value of FO000400 results in a start address of OxFFFFF0000400

Map Transaction command

The command

mt

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

185

Examples

creates a new handler mapped address range from 0xOOFFFF000020 to 0xOOFFFFOO0009F (inclusive) with
write access permission on the 1394 bus. This command is very similar to the Map Local Memory Region
command above except that it does not map the local memory and does not transmit a response packet.
Instead, this command calls an event callback function upon a reception of a valid request packet.

Transaction Mode

The command
tm <nle|d|t|lalc>

can be used to set the transaction mode. The transaction mode determines the response code that will be
transmitted upon a request as part of the response packet. The following response codes can be set as
parameter for this command:

e: No repsponse

d: Data error

t: Type Error

a: Address error

c: Conflict Error

Other commands
Use ‘?’ (help) command to display the menu. Use the ‘qu’ (quit) command to terminate the demo application.

Use the 'W' command to enable more verbose output when inbound requests are received that match a
mapped address range.

186

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

Examples

12.2. Outbound Transactions

12.2.1. Outbound Transaction Demo

The Outbound Transaction Demo demonstrates functions defined in section Outbound Transactions.

When the demo application starts, the console should display a welcome message and a menu. With help of
this menu you can give simple commands to evaluate the functionality of the FireStack Outbound Transaction
API function set. The initial display should look like the following:

-- Request commands

rd <dest node> [size=4] read request (blocking)
wr <dest node> [size=4] write request (blocking)
rdn <dest node> [size=4] read request (non-blocking)

-- Generic commands

qu quit demo

>

Read Request Command

The command

rd <dest node> [size]

can be used to send a read request packet for address OxFFFFF0000400 to <dest node> and wait for a
response. If a response packet is not received within 500ms, the command will display a timeout error
message. The <dest node> needs to be specified without the bus number and should be between 0 and 63.
The optional [size] parameter determines the number of bytes to read and needs to be a multiple of 4.
Write Request Command

The command

wr <dest node> [size]

can be used to send a write request packet for address OxFFFFF0000800 to <dest node> and wait for a
response. If a response packet is not received within 2s, the command will display a timeout error message.
The <dest node> needs to be specified without the bus number and should be between 0 and 63. The
optional [size] parameter determines the number of bytes to write and needs to be a multiple of 4.
Non-blocking Read Request Command

The command

rdn <dest node> [size]

can be used to send a read request packet for address OxFFFFF0000400 to <dest node> and will return

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 187

Examples

immediately. The callback function will be called to indicate a successful reception of a response packet or a
timeout error if no response is received within 2 seconds. The <dest node> needs to be specified without the
bus number and should be between 0 and 63. The optional [size] parameter determines the number of bytes
to read and needs to be a multiple of 4.

Other commands

Use ‘?’ (help) command to display the menu. Use the ‘qu’ (quit) command to terminate the demo application.

188 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

Examples

12.3. Low-Level 1394

12.3.1. Low-level Demo
The Low-Level Demo demonstrates some functions defined in section Low-level 1394.
When the demo application starts the console displays a welcome message and a menu. With help of this

menu you can give simple commands to evaluate the functionality of the FireStack Low Level API function
set. The initial display should look like the following:

-- Receive commands

srg <timeout> single req packet receive
srs <timeout> single resp packet receive

-- Send commands
sp send async packets
-- Phy Register commands

rp <reg> read local phy register
wp <reg> <value> write local phy register

-— Generic commands

qu quit demo

Receive a single request packet

The command

srg <timeout>

can be used to receive a single request packet that is sent to the local node. The command will return with a
timeout error if no packet is received within <timeout> ms.

Receive a single response packet

The command
srs <timeout>

can be used to receive a single response packet that is sent to the local node. The command will return with
a timeout error if no packet is received within <timeout> ms.

Send asynchronous packets
The command

sp

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 189

Examples

can be used to transmit sewveral kinds of asynchronous packets. When issued it will transmit one Write
Quadlet Request, one Write Block Request, one Write Response, one Read Quadlet Request, one Read
Block Request, one Read Quadlet Response, one Read Block Response, one Lock Request, one
Asynchronous Stream, and one Lock Response packet.

Read local PHY register

The command

rp <reg>

can be used to read a local PHY register. When issued it will read register offset <reg> and display the
contents of the local PHY register.

Write local PHY register

The command

wp <reg> <value>

can be used to write <value> to local register offset <reg>.
Other commands

Use “?’ (help) command to display the menu. Use the ‘qu’ (quit) command to terminate the demo application.

190

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

Examples

12.4. Isochronous Reception

12.4.1. Isochronous Reception Demo

The Isochronous Reception Demo demonstrates some functions defined in section Isochronous Reception.

When the demo application starts the console displays a welcome message and a menu. With help of this
menu you can give simple commands to evaluate the functionality of the FireStack Isochronous Reception

API function set. The initial display should look like the following:

*** 3 Devices found

--- Bus Commands ---

ob <device num> open bus
cb close bus

—--—- Context Commands ---

crc <F | P | D> [M | C] create context
<pbuff-rFill |

[multi-channe
clc <contextID> close context
gc <contextID> start context
hc <contextID> stop context
Ccs <contextID> context status

--- Generic Commands ---

qu quit application

0: deviceId: 0, pciBus: 6, pciDevice: 6, pciFunc:
1: deviceId: 1, pciBus: 6, pciDevice: 5, pciFunc:
2: devicelId: 2, pciBus: 6, pciDevice: 4, pciFunc:

0, pciRev: 1
0, pciRev: 1
0, pciRev: 1

Pkt-per-buff | Dual-buff>

1

cycle-match]

Open a bus
The command

ob <device num>

can be used to open a bus on the specified device. The device number should be one of the first numbers

displayed at the beginning of the welcome message.
Close a bus

The command

cb

can be used to close an open bus that has been opened by the "ob" command. This application can open

one bus at any given time.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

191

Examples

Create a context

The command
crc <F | P | D> [M | C]

can be used to create a context which is required in order to set up receive buffers. A user can choose one of
three buffer modes: Buffer-Fill, Packet-per-Buffer, or Dual-Buffer mode. Optionally, a context can be created
with the multi-channel and/or the cycle-match options. Please refer to the Isochronous Reception section for
details. This command returns a number that is assigned to a newly created context. The number will be
needed for other commands described below.

Close a context
The command
clc <contextID>

can be used to close a context that is created by the "crc" command and frees all resources associated with
the context.

Start a context

The command

gc <contextID>

can be used to start isochronous reception on the specified context.
Stop a context

The command

hc <contextID>

can be used to stop isochronous reception on the specified context.
Display context status

The command

cs <contextID>

can be used to display the current status of the specified context. Please refer to the Isochronous Reception
section for details.

Other commands

Use ‘?’ (help) command to display the menu. Use the ‘qu’ (quit) command to terminate the demo application.

192 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

Examples

12.5. Isochronous Transmission

12.5.1. Isochronous Transmission Demo

The Isochronous Transmission Demo demonstrates some functions defined in section Isochronous

Transmission.

When the demo application starts the console displays a welcome message and a menu. With help of this
menu you can give simple commands to evaluate the functionality of the FireStack Isochronous Transmission

API function set. The initial display should look like the following:

*** 3 Devices found

0: deviceId: O,
1: deviceId: 1,
2: deviceId: 2,

--—- Bus Commands ---

ob <device num>
cb

Context Commands ---

<channel> <speed> [L]

<contextID>
gc <contextID> [C]

hc <contextID>
gc <contextID>

Generic Commands ---

pciBus: 5,
pciBus: 5,
pciBus: 5,

pciDevice: 4,
pciDevice: 4,
pciDevice: 4,

pciFunc: 0,
pciFunc: 1,
pciFunc: 2,

open bus
close bus

create context

[L: loop]
close context
start context

[C: cycle-match]
stop context
get context status

quit application

pciRev:

pciRev:
pciRev:

10
10
10

Open a bus

The command

ob <device num>

can be used to open a bus on the specified device. The device number should be one of the first numbers
displayed at the beginning of the welcome message.

Close a bus

The command

cb

can be used to close an open bus that has been opened by the "ob" command. This application can open

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

193

Examples

one bus at any given time.

Create a context

The command

crc <channel> <speed> [L]

can be used to create a Isochronous Transmission context which is required in order to transmit data. A user
can choose a channel number (0 to 63) and speed (0: 100 Mbps, 1: 200 Mbps, 2: 400 Mbps). A loop option
can also be selected by adding a letter 'L' at the end of the command line. This command will set up a list of
packets and skips (no packet transmission) for 1600 cycles; every 4th cycle has a skip (no transmission),
every 9th cycle has a header-only packet, all other cycles have packets being transmitted with its data
payload size of 1024 bytes, and the last cycle with a callback option. Please refer to the Isochronous
Transmission section for details. This command returns a number that is assigned to a newly created
context. The number will be needed for other commands described below.

Close a context

The command

clc <contextID>

can be used to close a context that is created by the "crc" command and frees all resources associated with
the context.

Start a context

The command

gc <contextID>

can be used to start isochronous transmission on the specified context. Optionally, a letter 'C' at the end of
the command line will ask you to enter a cycle number at which the transmission will start.

Stop a context

The command

hc <contextID>

can be used to stop isochronous transmission on the specified context.
Query context status

The command

gc <contextID> [C]

can be used to display the current status of the specified context. Please refer to the Isochronous
Transmission section for details.

Other commands

Use ‘?’ (help) command to display the menu. Use the ‘qu’ (quit) command to terminate the demo application.

194

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

Examples

12.6. AS5643 Reception
12.6.1. Mil1394 Data Logger

The Mil1394 Data Logger demonstrates functions defined in AS5643 Reception.

When the demo application starts it will open up-to three busses and configures them to start receiving

specific messages. The

console displays the following output.

Bus[0] Opened

Bus[0]: Channelmask:1111100000000000000000000000000100000000000000000000000000000000
Bus[0] anyChan: 0, channel: 31, anyMessID: 1, messID: 4294967295, context: 2561
Bus[0] anyChan: 0, channel: 0, anyMessID: 1, messID: 4294967295, context: 2561
Bus[0] anyChan: 0, channel: 1, anyMessID: 0, messID: 11, context: 2561

Bus [0] anyChan: 0, channel: 2, anyMessID: 0, messID: 12, context: 2561

Bus[0] anyChan: 0, channel: 3, anyMessID: 0, messID: 13, context: 2561

Bus[0] anyChan: 0, channel: 4, anyMessID: 0, messID: 14, context: 2561

Bus[0] Context[0]: Options: bufferCB: 1, packet CB: 1

Bus[1] Opened

Bus[1l]: Channelmask:1111100000000000000000000000000100000000000000000000000000000000
Bus([1] anyChan: 0, channel: 31, anyMessID: 1, messID: 4294967295, context: 5377
Bus[1] anyChan: 0, channel: 0, anyMessID: 1, messID: 4294967295, context: 5377
Bus[1] anyChan: 0, channel: 1, anyMessID: 0, messID: 11, context: 5377

Bus|[1] anyChan: 0, channel: 2, anyMessID: 0, messID: 12, context: 5377

Bus[1l]: anyChan: 0, channel: 3, anyMessID: 0, messID: 13, context: 5377

Bus[1] anyChan: 0, channel: 4, anyMessID: 0, messID: 14, context: 5377

Bus[l] Context[0]: Options: bufferCB: 1, packet CB: 1

Bus[2]: Opened

Bus[2]: Channelmask:1111100000000000000000000000000100000000000000000000000000000000
Bus [2] anyChan: 0, channel: 31, anyMessID: 1, messID: 4294967295, context: 8193

Bus [2] anyChan: 0, channel: 0, anyMessID: 1, messID: 4294967295, context: 8193
Bus[2] anyChan: 0, channel: 1, anyMessID: 0, messID: 11, context: 8193

Bus|[2] anyChan: 0, channel: 2, anyMessID: 0, messID: 12, context: 8193

Bus[2] anyChan: 0, channel: 3, anyMessID: 0, messID: 13, context: 8193

Bus [2] anyChan: 0, channel: 4, anyMessID: 0, messID: 14, context: 8193

Bus[2] Context[0]: Options: bufferCB: 1, packet CB: 1

Bus[0] Context[00000000]: Started Reception

Bus[1l] Context[00000000]: Started Reception

Bus[2] Context[00000000]: Started Reception

For each bus it can be seen from the output that some channels are set to AS5643 Reception mode
(channelmask) and a couple of message filter entries have been set. Another device connected to the 1394
bus can be used to transmit packets that match these filter table entries.

In the folder where the source code of the example is located one can also find a FireSpy script that can be
used to transmit matching packets. When the script is started the control panel should look like the following:

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

195

Examples

& Scriptor - FireSpy3810 - F444D : C:/Program Files (#86)/Firetrac Software 0.96/examples,/mill 394datalogger/sendPacketsiss =10O] x|

X4 mom o oY om oot et mm o

When pressing the Send Once button a single packet will be transmitted that should be filtered-in by the
Mil1394 Data Logger and after pressing the button a couple of times the console output should look
something like the following:

196 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

Examples

Bus[0]: Opened
Bus[0]: Channelmask:1111100000000000000000000000000100000000000000000000000000000000
Bus[0] anyChan: 0, channel: 31, anyMessID: 1, messID: 4294967295, context: 2561
Bus[0] anyChan: 0, channel: 0, anyMessID: 1, messID: 4294967295, context: 2561
Bus[0] anyChan: 0, channel: 1, anyMessID: 0, messID: 11, context: 2561
Bus[0] anyChan: 0, channel: 2, anyMessID: 0, messID: 12, context: 2561
Bus[0] anyChan: 0, channel: 3, anyMessID: 0, messID: 13, context: 2561
Bus[0] anyChan: 0, channel: 4, anyMessID: 0, messID: 14, context: 2561
Bus[0] Context[0]: Options: bufferCB: 1, packet CB: 1
Bus[1] Opened
Bus[1l]: Channelmask:1111100000000000000000000000000100000000000000000000000000000000
Bus([1] anyChan: 0, channel: 31, anyMessID: 1, messID: 4294967295, context: 5377
Bus[1] anyChan: 0, channel: 0, anyMessID: 1, messID: 4294967295, context: 5377
Bus[1] anyChan: 0, channel: 1, anyMessID: 0, messID: 11, context: 5377
Bus[1] anyChan: 0, channel: 2, anyMessID: 0, messID: 12, context: 5377
Bus([1] anyChan: 0, channel: 3, anyMessID: 0, messID: 13, context: 5377
Bus[1] anyChan: 0, channel: 4, anyMessID: 0, messID: 14, context: 5377
Bus[l] Context[0]: Options: bufferCB: 1, packet CB: 1
Bus[2]: Opened
Bus[2]: Channelmask:1111100000000000000000000000000100000000000000000000000000000000
Bus[2] anyChan: 0, channel: 31, anyMessID: 1, messID: 4294967295, context: 8193
Bus [2] anyChan: 0, channel: 0, anyMessID: 1, messID: 4294967295, context: 8193
Bus[2] anyChan: 0, channel: 1, anyMessID: 0, messID: 11, context: 8193
Bus[2] anyChan: 0, channel: 2, anyMessID: 0, messID: 12, context: 8193
Bus[2] anyChan: 0, channel: 3, anyMessID: 0, messID: 13, context: 8193
Bus [2] anyChan: 0, channel: 4, anyMessID: 0, messID: 14, context: 8193
Bus[2] Context[0]: Options: bufferCB: 1, packet CB: 1
Bus[0] Context[00000000]: Started Reception
Bus[1l] Context[00000000]: Started Reception
Bus[2] Context[00000000]: Started Reception
Bus[0] Cntxt[0] Channel[0]
[0x00000000] [0x12345678] [0x00000001] [0x01000100]
[0x00000001] [0x00000000] [0x00000000] [0x00000000]
Bus[0] Cntxt[0] Channel[0]
[0x00000000] [0x12345678] [0x00000001] [0x01000100]
[0x00000001] [0x00000001] [0x00000000] [0x00000000]
Bus[0] Cntxt[0] Channel[0]
[0x00000000] [0x12345678] [0x00000001] [0x01000100]
[0x00000001] [0x00000002] [0x00000000] [0x00000000]
Bus[0] Cntxt[0] Channel[0]
[0x00000000] [0x12345678] [0x00000001] [0x01000100]
[0x00000001] [0x00000003] [0x00000000] [0x00000000]

The example will exit when pressing a key.

12.6.2. Mil1394 Receive Demo

The Mil1394 Reception Demo demonstrates some functions defined in section AS5643 Reception.

When the demo application starts the console displays a welcome message and a menu. With help of this
menu you can give simple commands to evaluate the functionality of the FireTrac AS5643 Reception API
function set. The initial display should look like the following:

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

197

Examples

Bus opened
Channelmask:1111100000000000000000000000000100000000000000000000000000000000
Number of filters: 6

channel messageID context

0 any 2817

1 11 3073

2 12 3329

3 13 2817

4 14 3073

31 any 2561
Context[0]: Started Reception
Context[1l]: Started Reception
Context[2]: Started Reception
Context[3]: Started Reception

-- Filter commands

af <channel> <messageId> <context> add filter (for channel and messageId: 'a' = any)
rf <channel> <messageId> remove filter (channel and messageld: 'a' = any)
1f list filters

-- Generic commands

qu quit demo

Add filter item

The command
af <channel> <messageId> <context>

can be used to add an entry to the current filter table. Matching packets with the same <channel> and
<messageld> will then be received into the specified <context>. The example only supports 4 contexts.

Remove filter item

The command

rf <channel> <messageId>

can be used to remove a previously added filter entry from the current filter table. Please specify the
<channel> and <messageld> exactly as when the original item was added.

List filter items

The command

1f

can be used to show the current contents of the filter table.

198

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

Examples

Other commands
Use ‘?’ (help) command to display the menu. Use the ‘qu’ (quit) command to terminate the demo application.
Receiving messages

Another device connected to the 1394 bus can be used to transmit packets that match the current filter table
entries.

In the folder where the source code of the example is located one can also find a FireSpy script that can be
used to transmit matching packets. When the script is started the control panel should look like the following:

& Scriptor - FireSpy3810 - F444D : C:/Program Files (x86)/Firetrac Software 0.96/examples/mill394datalogger/sendPacketsiss 0] x|

v Y 10 = = =
X[5 b ._ .

When pressing the Send Once button a single packet will be transmitted that should be filtered-in by the
Mil1394 Data Logger and after pressing the button a couple of times the console output should look
something like the following:

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 199

Examples

Bus opened
Channelmask:1111100000000000000000000000000100000000000000000000000000000000
Number of filters: 6

channel messageID context

0 any 2817

1 11 3073

2 12 3329

3 13 2817

4 14 3073

31 any 2561
Context[0]: Started Reception
Context[1l]: Started Reception
Context[2]: Started Reception
Context[3]: Started Reception

-- Filter commands

af <channel> <messageId> <context> add filter (for channel and messageId: 'a' = any)
rf <channel> <messageId> remove filter (channel and messageld: 'a' = any)
1f list filters

-- Generic commands
qu quit demo
>Context[1] Channel[0]
[0x00000000] [0x12345678] [0x00000001] [0x01000100]
[0x00000001] [0x00000000] [0x00000000] [0x00000000]
Context[1l] Channel[0]
[0x00000000] [0x12345678] [0x00000001] [0x01000100]
[0x00000001] [0x00000001] [0x00000000] [0x00000000]
Context[1l] Channel[0]
[0x00000000] [0x12345678] [0x00000001] [0x01000100]
[0x00000001] [0x00000002] [0x00000000] [0x00000000]

200

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

Examples

12.7. AS5643 Transmission
12.7.1. Mil1394Transmit Demo

The Mil1394 Transmission Demo demonstrates some functions defined in section AS5643 Transmission.
Most functions do not offer many options to customize their execution. Main reason is that we wanted to offer
simple and straightforward source code to show how this API works.

When the demo application starts the console displays a welcome message and a menu. With help of this
menu you can give simple commands to evaluate the functionality of the FireTrac AS5643 Transmission API
function set. The initial display should look like the following:

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 201

Examples

*** 3 Devices found

0: deviceId: 0, pciBus: 6,
1: devicelId: 1, pciBus: 6,
2: deviceId: 2, pciBus: 6,

Bus Commands —---

ob <device num>
cb

--- Mill1394 Trm Single Mode

sms
spms

--- Mil1394 Trm Stream Mode

rg <filename>

pciDevice: 4, pciFunc: 0, pciRev: 5, devType:
pciDevice: 4, pciFunc: 1, pciRev: 5, devType:
pciDevice: 4, pciFunc: 2, pciRev: 5, devType:
Menu -—=

help (this menu)

open bus

close bus

transmit single message

transmit single

read regen file

split message

as stream

sml stream message list

spml stream split message list
gst start stream

hst stop stream

cst clear stream

stst display stream status

Mil11394 Trm Repeating Message Mode ---

cms <msgsize> <ch> <offset> <jitter> create message
gms <msgnum> start message created with cms
hms <msgnum> stop message created with cms
wms <msgnum> close message created with cms
oms <msgnum> [c val(0-63)] [s val(0-2)] [v val(0-1)]

change message options
display message status
list messages

stms <msgnum> created with cms

lms

Mil1394 Trm STOF Message Mode ---

gf start STOF message

hf stop STOF message

w write STOF message

of [c val(0-63)] [s val(0-2)] [v val(0-1)]
set STOF options

--- Mill394 Trm Frame Sync Mode ---

fmf <extOut val(0-3)> <framelLength> <controlFlag>
frame syncMode FreeRunning

fmp <extOut val(0-3)> <frameLength> <controlFlag> <channel> <syncmargin>
frame syncMode Packet

fms <extIn val (1-3)> <extOut val(0-3)> <framelLength> <controlFlag> <syncmargin>
frame syncMode External Signal

fmb <bus wval (0-2)> <extOut val (0-3)> <frameLength> <controlFlag> <syncmargin>
frame syncMode other bus

--- Generic commands ---

sts get STOF Timestamp

qu quit demo

202 Copyright(C) 2008-2020, DapTechnology, Version 7/24/202
>

Examples

Opening and closing a bus
Open Bus

The command

ob <device num>

can be used to open one of the buses found and listed at the top of the console output.

Close Bus

The command

cb

can be used to close the currently opened bus.
Single Message Mode

Commands below will create one context in single message mode if the context does not exist. This mode
allows to transmit a single message at a time at a specific offset time.

Transmit a single message

The command

sms

can be used to transmit a single message on channel 15 at frame offset time 2500us and at speed S200.
Transmit a single message with split buffers

The command

spms

can be used to transmit a singel message on channel 16 at frame offset time 5500 and at speed S100. The

major difference compared to the "sms" command abowe is that the message originates from multiple buffers
and is automatically combined by the DMA engine of the Link Layer.

Streaming Messages Mode

Commands below will create one context in streaming messages mode if the context does not exist. This
mode can be used to manage a queue of packets (stream) that can be prepared ahead of time. This is very
useful to for example stream messages from an input file at specific offset times.

Read FireSpy regeneration file as stream

The command
rg <filename>

can be used to enqueue packets from a file in Regeneration format to the streaming mode context. This
format can be generated by using the export functionality of the FireSpy Recorder.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 203

Examples

Stream message list

The command

sml

can be used to enqueue 4 messages to the streaming mode context to be transmitted.

Stream message list with split buffers

The command

spml

can be used to enqueue 4 messages to the streaming mode context to be transmitted. The major difference
compared to the "sml" command abowe is that each message originates from several memory buffers and is
automatically combined bij the DMA engine of the Link Layer.

Start stream

The command

gst

can be used to start the context opened in streaming mode. The context will then transmit any packets
already in the queue at their requested offset times.

Stop stream

The command

hst

can be used to stop the context opened in streaming mode.
Clear stream

The command

cst

can be used to clear any messages currently in the transmission queue of the context opened in streaming
mode.

Display stream context status

The command

stst

can be used to display status of the context opened in streaming mode.

Repeating Message Mode

Commands below will create one context in repeating message mode if the context does not exist. This
mode can be used to setup packets that need to be repeatedly transmitted each new frame at the requested

frame offset time. Contents will remain the same in this example.

Create message

204 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

Examples

The command

cms <msgsize> <ch> <offset>

can be used to setup a message object that can be controlled individually. It will be setup with <msgsize>
number of bytes to be transmitted on channel <ch> at frame offset time <offset>. The message wil be created
in stopped state. A message ID is returned that can be used by the other functions to control the message.
Start message

The command

gms <msgnum>

can be used to start transmission of a message already created by specifying its <msgnum>. The message
will be transmitted once every frame at the specified frame offset time.

Stop message

The command

hms <msgnum>

can be used to stop transmission of a message already created and currently in transmission mode.
Close message

The command

wms <msgnum>

can be used to release any resources associated with an already created message by specifying its
<msgnum>.

Change message options

The command

oms <msgnum> [c val(0-63)] [s val(0-2)] [v val(0-1)]

can be used to change options of an already created message by specifying its <msgnum>.
c: Specify channel. Valid range of values is from 0 to 63.

s: Specify transmission speed. Please refer to Speed Codes for definitions of speed codes.
v. Specify Auto VPC mode. 0: Disable, 1: Enable

Display message status

The command

stms
can be used to display status of a repeating message.
List messages

The command

lms

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 205

Examples

can be used to get a list of messages that have been created so far.
STOF Messages Mode

Commands below will create one context in STOF message mode if the context does not exist. This mode
can be used to control the transmission of STOF packets from the local node.

Start STOF transmission

The command

gf

can be used to start transmission of STOF packets by the local node.
Stop STOF transmission

The command

hf

can be used to make the local node stop transmitting STOF packets.
Write STOF message contents

The command

wf

can be used to set the contents of the STOF message. At startup the contents are undefined so it is
recommended to call this function before starting STOF message transmission.

Set STOF message options

The command

of [c val(0-63)] [s val(0-2)] [v val(0-1)]

can be used to set the options of the STOF message.

c¢: Specify channel. Valid range of values is from 0 to 63.

s: Specify transmission speed. Please refer to Speed Codes for definitions of speed codes.

v. Specify Auto VPC mode. 0: Disable, 1: Enable

Frame Synchronisation Options

FireStack is very flexible in the way it generates the start of frame signal locally. Start of frame can be based
on an internal clock, can be synchronized to STOF packets on the bus and it can be synchronized to an
external signal.

Freerunning mode

The command

fmf <extOut> <framelength> <controlFlag>

can be used to disable frame synchronization and use an internal clock to time the frames of duration
<frameLength>us and with controlFlags set to <controlFlags>. On FireTrac V3 devices only: <extOut> Can

206

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

Examples

be used to enable one of the External Sync Outpus: 0:None, 1:A, 2:B, 3:C
Synchronize to STOF packets

The command

fp <extOut> <frameLength> <controlFlag> <channel> <syncmargin>

can be used to enable frame synchronization based on STOF packets received. You have to specify the
expected frame length <framelLength>, <channel> the sync packets are to be expected and the
<syncMargin> as well as <controlFlag>. Please refer to this section for a description of the options. On
FireTrac V3 devices only: <extOut> Can be used to enable one of the External Sync Outpus: 0:None, 1:A,
2:B, 3.C

Synchronize to external signal
The command
fms <extIn> <extOut> <framelength> <controlFlag> <syncmargin>

can be used to enable frame synchronization based on an external signal received on one of the external
sync pins, 0:A, 1:B or 2:C. You hawe to specify the expected frame length <framelLength> and the
<syncMargin> as well as <controlFlag>. Please refer to this section for a description of the options. On
FireTrac V3 devices only: <extOut> Can be used to enable one of the External Sync Outpus: 0:None, 1:A,
2:B, 3:C

Synchronize internally to one of the other buses

The command

fmb <bus> <extOut> <framelength> <controlFlag> <syncmargin>

can be used to enable frame synchronization to one of the other buses of the FireTrac device. Specify <bus>
0 for Bus A, 1 for bus B and 2 for bus C. You have to specify the expected frame length <framelLength> and
the <syncMargin> as well as <controlFlag>. Please refer to this section for a description of the options. On
FireTrac V3 devices only: <extOut> Can be used to enable one of the External Sync Outpus: 0:None, 1:A,
2:B, 3.C

Misc

Display STOF Time Stamp

The command

sts

can be used to display STOF time stamp information such as frame number, seconds, and sub-seconds
data.

Other commands

Use ‘?’ (help) command to display the menu. Use the ‘qu’ (quit) command to terminate the demo application.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 207

Examples

12.8.

AS5643 Cockpit Demo

12.8.1. AS5643 Control Computer Example

Introduction

This document describes the DapTechnology AS5643 Control Computer example. It implements the duties of
an AS5643 Control Computer as described in Aerospace

Standard AS5643 Rev. B, and serves to demonstrate how to implement an AS5643 CC using the
DapTechnology FireStack.

Getting Started
To get started with the AS5643 Control Computer example, you need at least a FireTrac card. A FireSpy
analyzer is highly recommended.

The AS5643 demonstration setup includes:

¢ The Control Computer
e A Control Unit
¢ A Display Unit

These units are connected with IEEE1394 FireWire. The Control Unit has some controls to set parameters
like altitude, pitch and more. It sends these to the Control Computer which processes the data and sends
data to the Display Unit which visualizes this information using dials and lights.

Cockpit Control Computer
Channel O

Input Message
ID: 000 / 00000000

I
Status Message
ID: 001 /00000001

o EchoMessage = @ @
= e ID: 002 / 00000002 ,

Cockpit Control Unit Cockpit Display Unit
Channel: 1 Channel: 2

AS5643 Example Setup

The FireDiagnostics Suite includes a Control Unit and Display Unit example. In the absence of a FireSpy, the
Control Computer example can simulate a missing Control Node and/or Display Node. It can transmit the
messages the missing nodes would have sent, and emulate their behavior. The Control Computer, designed
to be used in embedded systems, doesn't do visualization, though. Simulation is optional: it is controlled with
CC_SIMULATE_UNITS, defined in ControlComputer.h.

208

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

Examples

Usage
When the AS5643 CC is started it will print some messages during initialization, and present
a menu like this:

Initialize FireStack...

Open AS5643 Bus...

Configure AS5643 Bus...
Initialize CC Receiver...
Initialize Display Unit...
Initialize Control Unit...

New CC Network Bus Mode: Initializing
Response from Control Unit.
Response from Display Unit.

New CC Network Bus Mode: Normal
Control Unit comes online
Display Unit comes online

? help (this menu)

q quit

s status of the AS5643 network

P print current value of various sensors
m monitor value one sensor

>

Option 's' will print out the current status of the CC, the AS5643 Bus and the Remote Nodes.

Option 'p' will show the sensor data as defined in our Slash Sheet: Vertical Speed, Altitude, Bank, Pitch, ...
or show a message if no valid message data has been received yet.

Option 'm' allows you to select one sensor and it will continuously refresh the current value of that sensor.

Application Design

In order to perform the duties of a CC as defined by the AS5643 specifications, the CC needs to perform a

number of steps:

It needs to become the root node.

It needs to listen for messages transmitted by the Remote Nodes as defined in the Slash Sheet document.

Once it is the root node, it starts transmitting STOF packets.

The CC transmits configuration packets to all Remote Nodes.

It processes the data from packets received from Remote Nodes.

When all Remote Nodes have sent valid responses the initialization phase if finshed and the CC transitions

to normal mode.

¢ The CC continues to receive messages from Remote Nodes, process the data and transmit data to Remote
Nodes.

¢ The CC continues to monitor the bus configuration to make sure it can still perform it's duties and the
status of the Remote Nodes.

The diagram below visualizes the events, states and actions of the CC:

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 209

Examples

Set INIT Mode

Initiate Bus Reset

v

Bus Reset Event

| Start STOF Generation
e

|
Y
STOFEvent | 1 | Message Receive Event |[®-——-——————1

Update STOF Message Ignore Data

k.
Check RN Alive L @ Flag RN Alive
b
Process Data
Yes INIT Moge

A y Y

Transmit Config Message

Transmit Message H Sensor Data (

All RN Alive
or INIT Timeot

Set NORMAL Mode

,,77<{ Finished Processing

AS5643 CC State Diagram

The implementation heavily uses callbacks to process events. We shall now look at this in more detail, and
explain the advantages of using the DapTechnology FireStack.

Becoming the root node

As defined in AS5643 sec. 3.3.1, the CC needs to be the root node. The CC does this by transmitting a PHY
Config Packet to set the root-holdoff bit in each PHY's Base Register 1, to ensure it becomes the root node.
It then issues a bus reset.

FireStack allows us to register a callback for the Bus Reset event. In this callback we check that we are (still)
the root node. When the CC first becomes the root node, this event is used as a trigger to start generating
STOF packets, the next step in the initialization sequence.

STOF Generation

The CC transmits a STOF packet at the start of each frame. The format of the STOF packet is defined in
AS5643 sec. 3.3.1.1.1. The DapTechnology FireStack makes STOF management easy with specialized
functions for this task. Again, we register a callback to be called at the beginning of each frame. We use this
to update update the STOF message transmitted at the beginning of the next frame.

Bus Configuration

During initialization the CC transmits configuration messages to the Remote Nodes. This starts when the CC
starts STOF generation. The configuration messages can be used to update the STOF Transmit anbd
Receive Offsets of the Remote Nodes.

When a Remote Nodes has seen three consecutive frames with correct STOF timing it starts to send
packets back to the CC.

210

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

Examples

The whole process can be seen in this in this view from the FireSpy Recorder:

Mumber Packet/event Maode Size Source Destination Time (incr.)
0 R (bus reset 1) a
i W FhyselfiDo a 3 167.552 us
2 W FPhySelfiDo a 3 1.790 us
3 W FhyselfIDo a 3 2,126 us
4 MPhyConf a 3 14,423487 ms
5 R (bus reset 2) a 44,230 us
& W FPhySelfiDo a 3 167.511 us
7 M FPhySelfIDo a 3 1.790 us
8 W PhySeIfiDo a 3 21496 us
g M Streaming a 52 ch 31 24, 528127 ms
10 M Streaming a 34 chi 4,199931 ms
11 M Streaming a 92 ch2 400,004 us
12 M Streaming a 52 ch 31 7.900339 ms
13 M Streaming a a4 oh 1 4,199961 ms
14 M Streaming a 92 ch2 399,994 us
15 M Streaming a 52 ch 31 7.900339 ms
16 M Streaming a 34 chi 2.202139 ms
17 M Streaming a 92 chi 399,404 us
18 M Streaming a 92 ch2 1.998342 ms
19 M Streaming a 52 ch 31 7.900369 ms
20 M Streaming a 34 ch 0 2.202016 ms
21 M Streaming a 92 chi 399,455 us
22 M Streaming a 92 ch2 1.995484 ms
23 M Streaming a 52 ch 31 7.900339 ms
24 M Streaming a 34 ch 0 2.201833 ms
25 M Streaming a 92 chi 399,475 us
26 M Streaming a 92 ch2 1.998627 ms

AS5643 Netw ork Initialization Sequence

The first bus reset happens when the CC node opening the bus. Each of the three nodes (the CC and two
Remote Nodes) sends a self-ID packet. The CC proceeds to become root by transmitting a PHY
Configuration packet and issuing a bus reset.

The first two frames after the CC becomes root contain a STOF message (channel 31) and two configuration
messages (channel 0 and 1). After the third STOF message, the Remote Nodes reply back to the CC on
channel 0.

From there on, the CC stops sending (configuration) messages to the Control Node, and only sends
messages to update the Display Node status.

Receiving AS5643 Messages using a Message Filter

FireTrac provides a filtering mechanism that filters incoming packets in hardware based on their
channel number and/or message ID. We use this feature to subscribe to the messages of our
Remote Nodes as defined in the Slash Sheet. A callback function will be called for every packet
received that matches the message filter.

The validity of every message received is verified using the embedded Vertical Parity Check, described
in AS5643 sec. 3.2.4.1.9.4. Only messages with correct VPC will be processed.

The CC keeps statistics of messages recieved from Remote Nodes. If no message has been received from a
Remote Node for a number of frames (defined in the Slash Sheet), the node will be marked as offline.

Transmission of AS5643 Messages

The DapTechnology FireStack offers different transmission modes. For this example, we use the Repeating
Messages Mode with callback. This mode fits the task at hand: transmitting messages every frame to the
Remote Nodes. We just need to update the DMA buffers with the packet data.

The CC uses a double buffering for the DMA buffers with packet data. Shortly before transmitting the packet
at it's defined STOF offset, FireTrac transfers the packet data from the DMA memory to it's transmit FIFOs.
When done, the transmit complete callback is called and we swap the active buffer.

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 211

Examples

This leaves us the entire frame, minus the DMA Preload Time to safely manipulate the contents of the DMA
buffers without the risk of transmitting partial or corrupted packets. Refer to the FXMilFrameTimingOptions
section in the FireStack API Reference Manual for a detailed description of the DMA Preload Time.

However, in this implementation we use the STOF callback to construct messages to be transmitted later in
the frame. This works because our Slash Sheet defines STOF offsets sufficiently late in the frame. For very
short STOF offsets, transmission data would have to be prepared before the start of frame, because otherwise
packets would be transmitted in the next frame.

Disclaimer
This example serves to demonstrate the AS5643 features of the DapTechnology FireStack.
DapTechnology wants stress that this is NOT A TEMPLATE FOR AN ACTUAL FLIGHT COMPUTER.

The example is licensed under these terms, which appear in every source file:
Copyright (c) 2019, 2020 Dap Technology B.V. All rights reserved.

Dap Technology B.V.

DAP TECHNOLOGY IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" AS
A COURTESY TO YOU. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION AS
ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION OR STANDARD,
DAP TECHNOLOGY IS MAKING NO REPRESENTATION THAT THIS IMPLEMENTATION IS
FREE FROM ANY CLAIMS OF INFRINGEMENT, AND YOU ARE RESPONSIBLE FOR
OBTAINING ANY RIGHTS YOU MAY REQUIRE FOR YOUR IMPLEMENTATION.

DAP TECHNOLOGY EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT
TO THE ADEQUACY OF THE IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY
WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM
CLAIMS OF INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

212

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

Examples

12.9.
12.9.1.

Extensions

External Timer
The External Timer example demonstrates some functions defined in section External Timer.
When the demo application starts the console displays a welcome message and a menu. With help of this

menu you can give simple commands to evaluate the functionality of the FireTrac External Timer API function
set. The initial display should look like the following:

Time inputs found: 1
Just opening the first one.

Device Id: 3

PCI bus: 8

PCI device: 4

PCI function: 3

Sub-second resolution: 1000 nano seconds

-- Configuration commands

sm <mode> set mode: 0 - free running, 1 - IRIG B122, 2 - IRIG B1l22 |
sy <year> set year
so <offset> set free running offset

—-- Status commands

pt <0/1> enable print time each second. 0 - disable, 1 - enable
st get current status

-— Generic commands

qu quit demo

The external timer example controls the time input device as can be found on a FireTrac card. In order for this
demo to show anything else but free running clock one needs to connect the IRIG input connector to an IRIG-
B122 or IRIG-B122-1344 signal source.

Set Mode

The command

sm <mode>

can be used to select the time device mode. Valid modes are:

0 - Free running, an internal clock will be used and command "so" can be used to set its current time in
seconds since 1970.

1 - Sync to an IRIG-B122 source currently connected to the IRIG input connector. Current year can be set
using command "sy"

2 - Sync to an IRIG-B122-1344 source currently connected to the IRIG input connector

Set Year

The command

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 213

Examples

sy <year>
can be used in IRIG-B122 mode to set the <year> to use as current year.
Set free running offset

The command

so <offset>

can be used in Free Running mode to set the current time in seconds since 1-1-1970.
Print Time Each second

The command

pt <0/1>

can be used to print the current time each second. This does not work in free running mode. Set to 1 to
enable, 0 to disable.

Get current status

The command

st

can be used to print the current time device status to the console.
Other commands

Use ‘?’ (help) command to display the menu. Use the ‘qu’ (quit) command to terminate the demo application.

214 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

FireStack Release Notes

Chapter 13. FireStack Release Notes

FireStack version 2.1.10

Admintool
¢ Fixed a problem that prevented the user from changing the License Certificate location (19701)

Async Transactions
e OHCI Cards: Fixed a problem with responding to block reads from local Configuration ROM (19318)

Mil1394 General
e AS5643 Cockpit Demo: Control Computer Example (15236)

OSAL - Windows
e Support for the new FireAdapter3465bT (19301)

FireStack version 2.1.9

Firmware
¢ Integrate xFT4424bT version 6

OSAL - Linux
¢ Fixed permissions for users not in UNIX group 'fwupdater', which were causing licensing problems (19104)

e Support Linux kernel 5.4 (18889)

OSAL - Windows
¢ Fixed checking firmware version by fxCreateBusHandle function (19084)

xFT4424bT version 6

Top-Level
¢ Fixed a problem with sync output pins B, C and D (19018)

FireStack version 2.1.8

Mil1394 General
¢ Fixed a problem that prevented FX MIL_SYNC_OUT_SIGNAL_D from working as expected (19017)

Mil1394 Transmission
¢ Fixed a problem that made it impossible to stop and then restart a streaming mode Mil1394 Transmission
context (18951)

OSAL - Linux
e Support for SUSE SLES 15 (18903)

FireStack version 2.1.7

Firmware

¢ Integrate xFT3460bT_V1 version 21
Integrate xFT3460bT_V2 version 21
Integrate xFT3460bT_V3 version 13
Integrate xFT4424bT version 5

xFT3460bT V1 version 21

Firmware

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 215

FireStack Release Notes

¢ Integrate FireLink Extended version v1_05 e

XFT3460bT V2 version 21

Firmware
¢ Integrate FireLink Extended version v1_05 e

xFT3460bT V3 version 13

Firmware
¢ Integrate FireLink Extended version v1_05 e

xFT4424bT version 5

Firmware
¢ Integrate FireLink Extended version vi_05 e

FireLink Extended version vl 05 e

Mil1394

¢ Fixed a problem that would cause the first word of a DMA descriptor block to become corrupted in case an
internal FIFO transitions into a wait state when it is full. As a consequence the context may not issue a
transmission completion interrupt or perform an incorrect branch operation. (18779)

FireStack version 2.1.6

Mil1394 General

® FireTrac4424bT: Fixed a problem with the following sync input modes: FX MIL_SYNC_SIGNAL_D,
FX MIL_SYNC BUS_0, FX MIL_SYNC _BUS 1, FX MIL_SYNC_BUS 2, FX MIL_SYNC_BUS_3 and
FX MIL_SYNC_PACKET on any bus and FX MIL_SYNC_SIGNAL on the 4th bus. (18730)

FireStack version 2.1.5

Admintool
e Admintool no longer requires administrator rights (18508)
¢ Fixed incorrect topology right after opening bus (18698)

Firmware
¢ Integrate xFT3460bT_V3 version 12
¢ Integrate xFT4424bT version 4

Low-Level API
¢ Improved error checking on DMA buffer usage (18696)

Manual
* Release notes now include release notes for firmware (18522)

OSAL - LabView (RT)

¢ Fixed asynchronous transmit functions with data block to correctly use a DMA buffer (18694)
¢ Improved error checking on DMA buffer usage (18695)

¢ Installer signed using new SHA256 certificate (18641)

e Support for FireTrac4x24bT on LabVIEW (RT) (17733)

OSAL - QNX
e Support for FireTrac4x24bT on QNX (18256)

OSAL - Windows

216

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

FireStack Release Notes

e Install correct VCRedist version (18580)
e Support for FireTrac4x24bT on Windows (17238)
e Windows drivers for Windows versions prior to 10 no longer signed using insecure SHA1 certificate (18684)

Time Input Device
¢ FireTrac4424bT: Support for IRIG-B002 (IEEE1344) TTL and RS422 (18494)

xFT4424bT version 4

IRIG-B
e Support for DCLS mode IRIG-B, both TTL and RS422 (17437)

xFT3460bT V3 version 12

Firmware
e Support for FireTrac3460bT1 delivered after 01/01/2019 (18519)

FireStack version 2.1.4

Async Transactions
¢ Fixed a problem with responding to block reads from local Configuration ROM (18340)

Firmware
¢ Integrate xFT4424bT version 3

LAL - OHCI
¢ Add data payload byteswap option to FireStack 2.1 release branch (18484)

OSAL - Linux
¢ Fixed memory mapped register /O on FireTrac3460bT V1,V2 on 32bit platforms (18331)

OSAL - VxWorks
e Support the new FireTrac4424bT on VxWorks (18323)

xFT4424bT version 3

PCle Endpoint
¢ Fixed the PCI_CFG_HCI_CTL register for big-endian systems (18324)

FireStack version 2.1.3

Firmware
¢ Integrate xFT4424bT version 1

Low-Level API
o fxAsyRcwVaitSingleRequest now returns the correct size for ReadBlockRequest (17552)

OSAL - Linux

¢ Firetrac examples no longer fail when the terminal is set for unicode input (17113)

¢ Firetrac firmware updates no longer require root privileges. Users in the group fwupdater can run the
fwupdater utility and update the firmware. The group fwupdater is created when the package is installed, but
no users are added to this group. (18051)

¢ Now supports Linux kernel versions up to 5.1, with (optionally) the Real-Time Linux extensions (17843)

e Support for the new FireTrac4424bT on Linux (17239)

xFT4424bT version 1

Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020 217

FireStack Release Notes

Firmware
¢ Integrate FireLink Extended version vi_05_d

Top-Level
e |nitial firmware release for FireTrac4424bT (17327)

FireLink Extended version v1 05 d

Mil1394
e Support for 4 Sync Inputs/Outputs (was 3) (17791)

218 Copyright(C) 2008-2020, DapTechnology, Version 7/24/2020

	FireTrac Product Family
	Network Simulation
	Simulating AS5643 CCs and RNs
	FireTrac4424bT
	Software Requirements
	Architecture
	Dip Switches
	Fall-back firmware

	FireTrac3460bT
	Software Requirements
	Architecture
	Firmware
	Connector pinning
	Jumpers
	Fall-back firmware

	Specifications

	Software Overview
	VxWorks
	Introduction
	Supported Platforms
	Device specific notes
	Platform specific notes
	Configuration Flags
	Upgrading Firmware
	License Management

	Definition of Terms
	Document Conventions
	Parameter Naming Conventions
	API Revision History
	Changes in 2.1.x series
	Changes in 2.0.x series
	Changes in 1.0.x and 0.98.x series

	General Structures and Definitions
	Type Definitions
	Basic Types
	Special Types

	Structure Definitions
	FXInt64
	FXUint64
	FXAddress64
	FXChannelMask
	FXSetting

	Constants
	Speed Codes
	Transaction Types

	Administrative Functions
	Initialization
	Functions
	fxInitialize
	fxTerminate
	fxAddLicenseCertificate

	Bus Initialization
	Functions
	fxGetNumberOfBuses
	fxGetBusInfoList
	fxCreateBusHandle
	fxCloseBusHandle
	fxGetEUI64

	Structures
	FXBusInfo

	Settings
	Features
	Demo Mode
	Stack Size
	Thread Priorities
	Byte Order

	Memory Management
	Functions
	fxMemAlloc
	fxMemFree

	General
	Functions
	fxGetLibraryVersion

	Structures
	FXVersionInfo

	Error Handling
	Functions
	fxGetErrorMessage
	fxSetErrorCallback
	fxGetErrorStatus

	Constants
	Error Codes

	Type Definitions
	FXErrorCallback

	AS5643 Protocol API Reference
	AS5643 Frame Timing
	Functions
	fxMilSetFrameTimingOptions
	fxMilSetStofCallback
	fxMilGetFrameOffsetTime
	fxMilGetStofTimestamp

	Type Definitions
	FXMilStofCallback

	Structures
	FXMilFrameTimingOptions
	FXTimeStamp

	Constants
	Error Codes
	Frame Synchronization Input Modes
	Frame Synchronization Output Modes
	Frame Control Flags

	AS5643 Reception
	Settings
	Resource Usage

	Functions
	Channel Selections
	fxMilRcvEnableChannels
	fxMilRcvDisableChannels
	fxMilRcvGetEnabledChannels

	Message Filters
	fxMilRcvAddFilterItem
	fxMilRcvRemoveFilterItem
	fxMilRcvClearMessageFilter
	fxMilRcvGetNumFilterItems
	fxMilRcvGetFilterItemList

	Buffer Control
	fxMilRcvAddBuffer
	fxMilRcvLinkBuffers
	fxMilRcvRemoveBuffer
	fxMilRcvBufferStatus

	Context Control
	fxMilRcvCreateContextHandle
	fxMilRcvCloseContextHandle
	fxMilRcvSetContextOptions
	fxMilRcvStartContext
	fxMilRcvStopContext
	fxMilRcvContextStatus

	Type Definitions
	FXMilRcvContextHandle
	FXMilRcvCallback

	Structures
	FXMilRcvFilterItem
	FXMilRcvBufferOptions
	FXMilRcvBufferStatus
	FXMilRcvEventOptions
	FXMilRcvContextOptions
	FXMilRcvContextStatus

	Constants
	Error Codes
	Buffer Status Extended Staus Bits

	Data Formats
	Receive Packet Format

	AS5643 Transmission
	Settings
	Resource Usage

	Functions
	Context Management
	fxMilTrmCreateContextHandle
	fxMilTrmCreateContextHandleExt
	fxMilTrmCloseContextHandle

	Single Message Mode
	fxMilTrmMessage
	fxMilTrmSplitMessage

	Streaming Messages Mode
	fxMilTrmStrmWriteImmediate
	fxMilTrmStrmWriteMessageList
	fxMilTrmStrmWriteSplitMessageList
	fxMilTrmStrmStart
	fxMilTrmStrmStop
	fxMilTrmStrmClear
	fxMilTrmStrmGetStatus

	Repeating Messages Mode
	fxMilTrmCreateMessageHandle
	fxMilTrmCreateMessageHandleExt
	fxMilTrmCloseMessageHandle
	fxMilTrmSetMessageData
	fxMilTrmSetMessageSplitData
	fxMilTrmSetMessageOptions
	fxMilTrmStartMessage
	fxMilTrmStopMessage
	fxMilTrmGetMessageStatus

	STOF Message Mode
	fxMilTrmSetStofMessageOptions
	fxMilTrmWriteStofMessage
	fxMilTrmStartStofMessage
	fxMilTrmStopStofMessage

	Type Definitions
	FXMilTrmContextHandle
	FXMilTrmMessageHandle
	FXMilTrmCallback

	Structures
	FXMilTrmContextOption
	FXMilTrmMessageOption
	FXBuffer
	FXMilTrmMessage
	FXMilTrmSplitMessage
	FXMilTrmStrmStatus
	FXMilTrmMessageStatus
	FXMilStofMessage

	Constants
	Error Codes
	Context Options
	Context Modes
	Jitter Ranges
	Jitter Directions
	Message Options
	Jitter Modes
	Auto VPC Modes
	User Callback Event Code Bits

	Data Formats
	AS5643 Regeneration Format

	1394 API Reference
	Serial Bus Management
	Settings
	SBM Capabilities

	Functions
	fxSetBusResetCallback
	fxGetBusGeneration
	fxGetNumberOfNodesOnBus
	fxGetLocalNodeId
	fxGetMaxSpeedToNode

	Type Definitions
	FXBusResetCallback

	Inbound Transactions
	Functions
	Memory Mapping Functions
	fxMapLocalMemory
	fxMapRequestHandler
	fxClearMemoryMapping

	Local Memory Access Functions
	fxReadLocalMemory
	fxWriteLocalMemory
	fxLockLocalMemory

	Type Definitions
	FXRequestHandlerCallback
	FXRequestNotificationCallback

	Structures
	FXTransactionData
	FXMappingOptions

	Constants
	Error Codes
	Response Codes

	Outbound Transactions
	Functions
	fxReadTransaction
	fxWriteTransaction
	fxLockTransaction
	fxClearTransaction
	fxClearAllTransactions
	fxGetTransactionStatus
	fxGetNumTransactions
	fxGetTransactionList

	Type Definitions
	FXTransactionCompleteCallback

	Structures
	FXTransactionOptions
	FXTransactionInfo

	Constants
	Error Codes
	Transaction Status

	Isochronous Reception
	Feature Inquiry Functions
	fxIsoRcvGetNumberOfContexts

	Reception Functions
	Context Control
	fxIsoRcvCreateContextHandle
	fxIsoRcvCloseContextHandle
	fxIsoRcvStartContext
	fxIsoRcvStopContext
	fxIsoRcvContextStatus

	Buffer Control
	fxIsoRcvBufferFillAddBuffer
	fxIsoRcvPktPerBufferAddBuffer
	fxIsoRcvDualBufferAddBuffer
	fxIsoRcvLinkBuffers
	fxIsoRcvRemoveBuffer
	fxIsoRcvRemoveBuffers
	fxIsoRcvBufferFillBufferStatus
	fxIsoRcvPktPerBufferBufferStatus
	fxIsoRcvDualBufferBufferStatus

	Type Definitions
	FXIsoRcvContextHandle
	FXIsoRcvCallback

	Structures
	FXIsoRcvOption
	FXIsoRcvBuffer
	FXIsoRcvEventOptions
	FXIsoRcvBufferStatus
	FXIsoRcvBufferFillBufferStatus
	FXIsoRcvPktPerBufferBufferStatus
	FXIsoRcvDualBufferBufferStatus
	FXIsoRcvContextStatus

	Constants
	Buffer Modes
	Context Options
	Buffer Options
	Error Codes

	Data Formats
	Buffer-Fill mode Data Formats
	With Header/Trailer
	Without Header/Trailer

	Packet-per-buffer mode and dual-buffer mode Data Formats
	With Header/Trailer
	Without Header/Trailer

	Low-Level 1394
	Settings
	Resource Usage

	Functions
	Asynchronous Packet Reception Functions
	fxAsyRcvWaitSingleRequest
	fxAsyRcvWaitSingleResponse
	fxAsyRcvSetPacketCallback

	Single Packet Transmission Functions
	fxAsyTrmWriteQuadletRequest
	fxAsyTrmWriteBlockRequest
	fxAsyTrmWriteResponse
	fxAsyTrmReadQuadletRequest
	fxAsyTrmReadBlockRequest
	fxAsyTrmReadQuadletResponse
	fxAsyTrmReadBlockResponse
	fxAsyTrmLockRequest
	fxAsyTrmStream
	fxAsyTrmLockResponse

	PHY Packets and registers
	fxReadLocalPhyBaseReg
	fxReadLocalPhyPageReg
	fxWriteLocalPhyBaseReg
	fxWriteLocalPhyPageReg
	fxReadRemotePhyPageReg
	fxReadRemotePhyBaseReg
	fxPhyRemoteCommand
	fxPhySetForceRoot
	fxPhySetGapCount
	fxPingRemoteNode
	fxPhyPacketSetRcvCallback
	fxPhyPacketTrmRaw

	Topology Functions
	fxGetSelfIdData
	fxIssueBusReset

	Type Definitions
	FXAsyRcvPacketCallback
	FXPhyPacketRcvCallback

	Structures
	FXAsyRcvPacket

	Constants
	Error Codes
	PHY Remote Commands
	PHY Confirmation Flags

	Time Input Device API Reference
	Functions
	fxGetNumberOfTimeInputs
	fxGetTimeInputInfoList
	fxCreateTimeInputHandle
	fxCloseTimeInputHandle
	fxSetTimeInputMode
	fxSetTimeInputCurrentYear
	fxSetTimeInputFreeRunningOffset
	fxGetTimeInputStatus
	fxSetTimeInputStatusCallback
	fxSetTimeInputSecondCallback

	Type Definitions
	FXTimeInputHandle
	FXTimeInputStatusCallback
	FXTimeInputSecondCallback

	Structures
	FXTimeInputInfo
	FXTimeInputStatus

	Constants
	Time Input Mode
	Status Codes
	Error Codes

	Examples
	Inbound Transactions
	Inbound Transaction Monitor

	Outbound Transactions
	Outbound Transaction Demo

	Low-Level 1394
	Low-level Demo

	Isochronous Reception
	Isochronous Reception Demo

	Isochronous Transmission
	Isochronous Transmission Demo

	AS5643 Reception
	Mil1394 Data Logger
	Mil1394 Receive Demo

	AS5643 Transmission
	Mil1394Transmit Demo

	AS5643 Cockpit Demo
	AS5643 Control Computer Example

	Extensions
	External Timer

	FireStack Release Notes

