

User’s Manual
RAR-USB

Copyrights

User’s Manual Copyright © 2013 -2024 Abaco Systems, Inc.

This software product is copyrighted and all rights are reserved. The distribution and sale of this product
are intended for the use of the original purchaser only per the terms of the License Agreement.

Confidential Information - This document contains Confidential/Proprietary Information of Abaco Systems,
Inc. and/or its suppliers or vendors. Distribution or reproduction prohibited without permission.

THIS DOCUMENT AND ITS CONTENTS ARE PROVIDED "AS IS", WITH NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF DESIGN, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. ALL
OTHER LIABILITY ARISING FROM RELIANCE ON ANY INFORMATION CONTAINED HEREIN IS
EXPRESSLY DISCLAIMED.

Microsoft is a registered trademark of Microsoft Corporation.
Windows is a registered trademark of Microsoft Corporation.
LabVIEW is a registered trademark of National Instruments Corporation.

Abaco Systems, Inc. acknowledges the trademarks of other organizations for their respective products or
services mentioned in this document.

RAR-USB User’s Manual (1500-105)

Software Revision: 1.71
Document Revision: 1.71
Document Date: 15 April 2024

Abaco Systems, Inc.
8800 Redstone Gateway SW
Huntsville, AL 35808
Main +1 866-652-2226

abaco.support@ametek.com (email)

https://www.abaco.com/products/avionics

Additional Resources

For more information, please visit the Abaco Systems website at:

www.abaco.com

mailto:abaco.support@ametek.com
https://www.abaco.com/products/avionics
http://www.abaco.com/

RAR-USB User's Manual i

Contents and Tables

Contents

Chapter 1 The RAR-USB ... 1

Overview .. 1

Features .. 1

Operating Systems Supported ... 1

Specifications ... 2

USB Interface ... 2

Transmit Channels ... 3

32K Entry ARINC 717 Transmit Buffer Receiver Channels 3

Avionics Discrete Input and Output .. 3

IRIG Input and Output ... 3

Power Consumption ... 3

Operating Temperature .. 3

Weight .. 4

I/0 Connections .. 4

I/O Mating Connector .. 4

RAR-USB Input /Output Connector Pin-out .. 5

Optional RCONRARUSB-EC Adapter Cable .. 6

IRIG-B Signal Connections ... 7

Chapter 2 Software Installation 9

Software Installation under Windows ... 9

Device Driver Installation under Windows .. 9

Driver Installation with Windows ... 10

Multiple RAR-USB Device Installations .. 11

Installation Verification under Windows .. 12

Software Installation under Linux ... 12

Building Applications under Linux... 13

Chapter 3 RAR-USB Product Features 15

Overview .. 15

Programmable Transmit Channel Tri-State Control 15

RAR-USB User's Manual ii

ARINC 429 Protocol Support ... 15

ARINC 573/717 Protocol Support .. 16

RAR-USB Timers ... 17

Receive Message Time-tagging and Timer Usage 18

IRIG 64-Bit Time Reference ... 18

Internal 64-Bit One Microsecond Time Reference 19

Internal 32-Bit Twenty Microsecond Time Reference 19

Internal 32-Bit One Millisecond Time Reference 19

CEI-x20 Compatible Time Reference ... 19

Receive Message Buffering .. 20

Receive Buffer Entry Format ... 20

ARINC 429 Receive Label Filtering .. 21

Transmit Message Processing Methods .. 21

ARINC 429 Burst Transmission.. 22

ARINC 717 Frame Transmission .. 22

ARINC 429 Periodic Message Scheduling ... 23

ARINC 429 Transmit Playback Message Processing 26

Avionics Discrete I/O .. 27

Chapter 4 BusTools/ARINC™ Data Bus Analyzer 28

General Information .. 28

BusTools/ARINC Demo Software ... 28

Chapter 5 AR-STREAM-SW Software Distribution 29

Overview .. 29

API Source Files .. 29

SAR_API.C .. 29

GEN_ARINC_API.C ... 29

SAR_PROCESS_THREAD.C .. 30

SAR_API.H .. 30

SAR_TYPES.H .. 30

SAR_ERROR.H... 30

SAR_HW.H ... 30

CEI_TYPES.H ... 30

SAR_OS_WIN.C ... 30

Windows Libraries .. 31

Time-tag Structure Definition ... 32

Setting the Device Time... 33

Return Status Values ... 33

Programming with the AR-STREAM API Interface 34

Example Routines – Summary .. 36

EXAMPLE_APPLICATION.C .. 36

Dealing with Complex Message Scheduler Transmit Scenarios 37

RAR-USB User's Manual iii

Chapter 6 Program Interface Library 38

Overview .. 38

API Routines - Summary .. 38

Initialization and Control Routines .. 38

Device Control Routines .. 38

Termination Routines ... 39

Receive/Transmit Channel-level Configuration Routines 39

Device-level Configuration Routines .. 39

Receive Data Processing Routines .. 40

Transmit Data Processing Routines ... 41

Timer-related Routines .. 41

Information and Status Routines ... 42

Utility Routines .. 42

AR_ASSIGN_SCHEDULER_START_OFFSETS 44

AR_BLOCK_ON_DEVICE_UPDATE ... 46

AR_BOARD_TEST .. 47

AR_CLR_RX_COUNT .. 49

AR_CLOSE ... 50

AR_CONVERT_TIME_TO_STRING .. 51

AR_DEFINE_MSG .. 52

AR_DEFINE_MSG_BLOCK .. 54

AR_ENH_LABEL_FILTER .. 56

AR_EXECUTE_BIT ... 58

AR_GET_573_FRAME .. 60

AR_GET_429_MESSAGE ... 62

AR_GETBLOCK .. 64

AR_GETBLOCK_T ... 66

AR_GET_BOARDNAME ... 68

AR_GET_BOARDTYPE ... 69

AR_GET_CONFIG ... 70

AR_GET_DATA .. 74

AR_GET_DATA_XT ... 76

AR_GET_DEVICE_CONFIG.. 78

AR_GET_573_CONFIG .. 84

AR_GET_ERROR .. 87

AR_GETFILTER .. 88

AR_GET_IRIG_TIME_SET .. 90

AR_GET_LABEL_FILTER ... 91

AR_GET_LATEST ... 92

AR_GET_LATEST_T .. 93

AR_GETNEXT ... 95

AR_GETNEXTT .. 96

AR_GETNEXT_XT ... 98

RAR-USB User's Manual iv

AR_GET_RX_CHANNEL_STATUS ... 100

AR_GET_RX_COUNT .. 102

AR_GET_SNAP_DATA .. 103

AR_GET_SNAP_DATA_T ... 104

AR_GET_STATUS .. 106

AR_GET_STORAGE_MODE ... 107

AR_GET_TIME .. 108

AR_GET_TIMERCNTL .. 110

AR_GETWORD ... 111

AR_GETWORDT ... 113

AR_GETWORD_XT .. 115

AR_GO .. 117

AR_HAS_ERROR_OCCURRED .. 118

AR_INITIALIZE_API .. 119

AR_INITIALIZE_DEVICE ... 120

AR_LABEL_FILTER ... 121

AR_LOADSLV ... 123

AR_MODIFY_MSG ... 125

AR_MODIFY_MSG_BLOCK ... 127

AR_NUM_RCHANS .. 129

AR_NUM_XCHANS ... 130

AR_OPEN ... 131

AR_PUT_429_MESSAGE ... 132

AR_PUT_573_FRAME .. 133

AR_PUTBLOCK .. 135

AR_PUTBLOCK_MULTI_CHAN.. 137

AR_PUTFILTER .. 139

AR_PUTWORD .. 141

AR_RESET ... 143

AR_RESET_TIMERCNT .. 144

AR_SET_CONFIG ... 145

AR_SET_DEVICE_CONFIG .. 150

AR_SET_573_CONFIG ... 154

AR_SET_MULTITHREAD_PROTECT ... 157

AR_SET_ PRELOAD_CONFIG ... 158

AR_SET_RAW_MODE ... 160

AR_SET_ STORAGE_MODE .. 162

AR_SET_TIME ... 163

AR_SLEEP .. 165

AR_SET_TIMERRATE ... 166

AR_STOP .. 167

AR_VERSION .. 168

AR_WAIT ... 169

AR_WRITE_429_TRANSMIT_PLAYBACK.. 170

RAR-USB User's Manual v

Chapter 7 RAR-USB Hardware 172

Overview .. 172

Power ... 172

LEDs .. 172

Optional Mounting Kit .. 173

IRIG DAC Register ... 175

Avionics Discrete I/O .. 175

RAR-USB User's Manual vi

Figures

Figure 1. The RAR-USB ... 2

Figure 2. The RAR-USB ... 4

Figure 3. 68-pin I/O Connector – View Facing Connector 5

Figure 4. RCONRARUSB-EC Connector – View Facing Connector 6

Figure 5. The RAR-USB LEDs .. 173

Figure 6. RAR-USB Mounting Options ... 174

Figure 7. The RAR-USB Discrete I/O Circuit.. 175

Tables

Table 1. Power Consumption .. 3

Table 2. P2 Input/Output Connector ... 4

Table 3. RAR-USB Front Panel I/O Connections .. 5

Table 4. RCONRARUSB-EC Adapter Cable I/O Connections 7

Table 5. IRIG Signal Connections .. 7

RAR-USB User's Manual 1

CHAPTER 1

The RAR-USB

Overview

The RAR-USB is a multiple-channel USB-to-ARINC interface design

available in several channel configurations supporting ARINC 429,

ARINC 573/717, Avionics Discrete I/O, and IRIG time synchronization.

Features

The RAR-USB features available include:

◼ 64-bit 1 microsecond on-board timer

◼ 64-bit 1 microsecond ARINC 429 receive message time-stamps

◼ 1 millisecond periodic ARINC 429 message scheduler resolution

◼ ARINC 429 transmit message error injection

◼ ARINC 429 receive message error detection

◼ Software programmable ARINC 429 transmit and receive bit rate

◼ ARINC 429 receiver label filtering

◼ Merged mode ARINC 429 receive message buffering

◼ Fixed ARINC 429 Transmit Levels

◼ Fixed ARINC 429 Receive Threshold Levels

◼ IRIG-B reception supporting AM or DC/TTL input

◼ IRIG-B generator supporting DC/TTL output

Operating Systems Supported

The software distribution for the RAR-USB is AR-STREAM-SW,

supporting the following operating systems. Installation instructions are

The RAR-USB Specifications

RAR-USB User's Manual 2

provided in this manual for 32-bit and 64-bit Windows operating systems,

while instructions for 32-bit and 64-bit Linux are included both in this

manual and in the Linux distribution file.

• Windows XP 32-bit

• Windows 7 32-bit and 64-bit

• Server 2008R2 64-bit

• Windows 8 32-bit and 64-bit

• Windows 8.1 32-bit and 64-bit

• Windows 10 32-bit and 64-bit

• Windows 11 64-bit

• Server 2012R1+R2 64-bit

• Linux Kernel 3.16.x 32-bit and 64-bit

• Linux Kernel 4.0.5 32-bit and 64-bit

Specifications

Figure 1. The RAR-USB

USB Interface

◼ USB 2.0 Compliant

The RAR-USB Specifications

RAR-USB User's Manual 3

Transmit Channels

◼ Up to five independent differential serial transmit channels

◼ Automatic ARINC 429 parity generation

◼ 4096 message transmit buffer for each ARINC 429 channel

◼ Baud rate/slew rate software-programmable for each channel

◼ 1024 entry message table supporting scheduled message

transmission for all ARINC 429 channels

◼ 52K entry transmit playback buffer supporting time-synchronized

transmission for all ARINC 429 channels

◼ 32K Entry ARINC 717 Transmit Buffer

Receiver Channels

◼ Up to sixteen independent, differential receive channels

◼ 176K receive message storage capacity through single merged

receive buffer

◼ 64-bit, 1 µsec time-tag stored with each received message

◼ ARINC 429 Parity error detection

Avionics Discrete Input and Output

◼ Eight dedicated avionics-level discrete channels

◼ Output may switch to ground up to 500mA

◼ Fixed input threshold of 2.7 +/- 0.2 volts

IRIG Input and Output

◼ IRIG Time-code receiver and transmitter

Power Consumption

Table 1. Power Consumption

+5V

500 mA max

Operating Temperature

 -40 to +75° C

The RAR-USB I/0 Connections

RAR-USB User's Manual 4

Weight

9.3 ounces (without cable)

I/0 Connections

Figure 2. The RAR-USB

I/O Mating Connector

At publication of this document, the following mating connector was

compatible with the 68-pin latched SCSI-3 connector provided on the

RAR-USB. Abaco Systems supplies the cable CONSCSI3-6 for this

connection, which has the same connector.

Table 2. P2 Input/Output Connector

Connector Part No Description Manufacturer

P2 1-5750913-7 68 pin SCSI-3 AMP/Tyco

The RAR-USB I/0 Connections

RAR-USB User's Manual 5

RAR-USB Input /Output Connector Pin-out

Figure 3. 68-pin I/O Connector – View Facing Connector

Table 3. RAR-USB Front Panel I/O Connections

Pin Signal Pin Signal

1 TX1A 35 TX1B

2 TX2A 36 TX2B

3 TX3A 37 TX3B

4 TX4A 38 TX4B

5 TX5A 2 39 TX5B 2

6 Ground 1 40 Ground 1

7 IRIGRX+ 41 IRIGRX-

8 IRIGTX 42 Ground 1

9 DISCRETE #1 43 Ground 1

10 DISCRETE #2 44 Ground 1

11 DISCRETE #3 45 Ground 1

12 DISCRETE #4 46 Ground 1

13 DISCRETE #5 47 Ground 1

14 DISCRETE #6 48 Ground 1

15 DISCRETE #7 49 Ground 1

16 DISCRETE #8 50 Ground 1

17 Ground 1 51 Ground 1

18 RX1A 52 RX1B

19 RX2A 53 RX2B

20 RX3A 54 RX3B

21 RX4A 55 RX4B

22 RX5A 56 RX5B

23 RX6A 57 RX6B

24 RX7A 58 RX7B

25 RX8A 59 RX8B

26 Ground 1 60 Ground 1

27 RX9A 61 RX9B

28 RX10A 62 RX10B

29 RX11A 63 RX11B

30 RX12A 64 RX12B

31 RX13A 65 RX13B

32 RX14A 66 RX14B

The RAR-USB I/0 Connections

RAR-USB User's Manual 6

Pin Signal Pin Signal

33 RX15A 67 RX15B

34 RX16A 3 68 RX16B 3

1 The ground pins are provided for shielding or as discrete I/O return lines, as required.

2 The ARINC 573/717 transmit signals are supported on the respective channel 5
(TX5A/TX5B) pins for both the BPRZ and HBP protocols.

3 The ARINC 573/717 receive signals are supported on the respective channel 16
(RX16A/RX16B) pins for both the BPRZ and HBP protocols.

The RAR-USB product configurations all have the same channel pin-out

definition, adjusted based on the number of channels and protocols

included. The following table describes the front panel connector pin

layout for the RAR-USB. For the -J version of the RAR-USB, the ARINC

573/717 protocol support pins are assigned to receive channel 16

(RX16A/B) and transmit channel (RX5A/B).

The RAR-USB ARINC 429 I/O pin assignments are pin-compatible with the CEI-520/520A
and RCEI-530 I/O pin assignments.

To externally wrap ARINC signals, connect the transmitter signals to the

respective receiver signals, TXnA to RXnA and TXnB to RXnB.

Optional RCONRARUSB-EC Adapter Cable

An optional adapter cable is available to provide a connection which is

ARINC 429 and Discrete I/O pin-compatible with the RAR-EC/(R)CEI-

715 adapter cables (CONRAR-EC, CONCEI-715, RCONCEI-715A), via

the RCONRARUSB-EC cable.

RCONRARUSB-EC Adapter Cable Pin-out

The pin-out for the RCONRARUSB-EC Adapter Cable 37-pin D-

Subminiature receptacle connector is shown below:

Figure 4. RCONRARUSB-EC Connector – View Facing Connector

Notes:

Note:

The RAR-USB I/0 Connections

RAR-USB User's Manual 7

Table 4. RCONRARUSB-EC Adapter Cable I/O Connections

Adapter
Pin

SIGNAL
Adapter

Pin
SIGNAL

1 RX1A 20 RX1B

2 RX2A 21 RX2B

3 RX3A 22 RX3B

4 RX4A 23 RX4B

5 RX5A 24 RX5B

6 RX6A 25 RX6B

7 RX7A 26 RX7B

8 RX16A 2 27 RX16B 2

9 RX8A 28 RX8B

10 TX1A 29 TX1B

11 TX2A 30 TX2B

12 TX3A 31 TX3B

13 TX4A 32 TX4B

14 Discrete #1 33 Discrete #2

15 Discrete #3 34 Discrete #4

16 TX5A 3 35 TX5B 3

17 Ground 36 Ground

18 IRIG TX 37 IRIG RX-

19 IRIG RX+

1 The ground pins are provided as Discrete I/O return lines or for shielding, as required.

2 The ARINC 573/717 receive signals are supported on the respective channel 16
(RX16A/RX16B) pins for both the BPRZ and HBP protocols.

3 The ARINC 573/717 transmit signals are supported on the respective channel 5
(TX5A/TX5B) pins for both the BPRZ and HBP protocols.

IRIG-B Signal Connections

IRIG-B time (AM or DC/TTL) may be received via signals IRIGRX+ and

IRIGRX-. The following IRIG formats are accepted:

Table 5. IRIG Signal Connections

Format
Modulation
Frequency

Frequency/
Resolution

Coded
Expressions

B 0, 1 0, 2 0, 1, 2, 3

Upon completion of the program load, the RAR-USB initiates IRIG B002

(DC/TTL) transmission from the onboard IRIG encoder via the IRIGTX

signal. The IRIGTX signal can source/sink 16 mA at valid TTL levels.

Notes:

The RAR-USB I/0 Connections

RAR-USB User's Manual 8

To externally wrap the IRIG generator to the IRIG receiver, connect the

IRIGTX signal to IRIGRX+ input, and connect the IRIGRX- input to

Ground.

RAR-USB User's Manual 9

CHAPTER 2

Software Installation

Software Installation under Windows

Although system resources may limit the number of boards installed on a

system, the AR-STREAM-SW distribution supports up to four devices

when installed under one of the operating systems documented in the

section Operating Systems Supported. Prior to inserting the RAR-USB

into a USB port, the AR-STREAM-SW software distribution must be

installed on your PC.

To install the software, follow these steps:

1. Exit all programs.

1. Insert the AR-STREAM-SW CD into your CD drive.

2. If the installation does not automatically start after 10 seconds:

• Click Start from the Windows Task Bar and select Run.

• Use the Browse button to locate the Setup.exe file in the

Setup\Disk1 folder.

• Double-click the file setup.exe. Then, click OK to launch the

setup program.

3. Follow the on-screen instructions for the installation.

4. Note which device number is allocated during the installation.

Device Driver Installation under Windows

Once the software has been successfully installed, attach the RAR-USB

cable to the RAR-USB device (threading the screw-locks), then insert the

RAR-USB USB connector into any USB port on your PC.

Software Installation Device Driver Installation under Windows

RAR-USB User's Manual 10

Driver Installation with Windows

To complete the installation under all supported Windows operating

systems, follow these steps:

With Windows 11, 10, 8.1, 8, 7, and Server 2012R1+R2/2008R2, the

RAR-USB device driver installation should occur automatically. Once

installation completion is acknowledged, you may continue with

Installation Verification.

For 32-bit Windows XP the Windows Plug and Play hardware manager

should detect the RAR-USB device, and the Found New Hardware dialog

should automatically startup. Decline any request to query the Microsoft

web site to obtain drivers for this device and continue as follows:

◼ When the Found New Hardware Wizard dialog is displayed for RAR-

USB Firmware Download, select the following option:

 Install the software automatically (Recommended)

Then select Next. Under the Completing the Found New Hardware

dialog, select Finish.

◼ After a brief period the Found New Hardware Wizard dialog will

then be displayed for RAR-USB, select the following option:

 Install the software automatically (Recommended)

Then select Next. Under the Completing the Found New Hardware

dialog, select Finish.

If Windows does not detect the new hardware, you should contact Abaco

Systems Technical Support.

To check for proper driver installation (not necessary for any Windows

version), review the device status in the Windows Device Manager as

follows:

◼ Under Windows 7, XP and Server 2008R2, use the "Start->Run"

command prompt, enter "devmgmt.msc" to open the Windows

Device Manager.

◼ Under Windows 11, 10, 8.1, 8 and Server 2012, open the "Run"

application and enter "devmgmt.msc" to open the Windows Device

Manager

◼ Expand the Abaco Avionics Devices folder.

◼ Verify the device entry RAR-USB is shown. If this is true, the device

driver was properly installed. You have completed installation of the

hardware.

Software Installation Device Driver Installation under Windows

RAR-USB User's Manual 11

Multiple RAR-USB Device Installations

When multiple RAR-USB devices of the same configuration are installed

on a host, the respective Device ID referenced by the application software

must be manually assigned to each RAR-USB using the USB Device Id

Setup Utility. This action assigns software/API referenced Device ID’s to

a specific device via the Serial Number programmed into that device, also

printed on the underside of the device case.

1. From the Abaco AR-STREAM-SW apps/shortcut group, launch the

“AR-STREAM-SW USB Device Setup” application. When multiple

RAR-USB devices are installed, they should all appear in the Device

Setup dialog, with the first device referenced by the lowest Device ID

highlighted.

2. Click on “Edit Device…” to launch the “Edit Device ID” dialog.

3. Expand the Serial Number pull-down and select the Serial Number on

the RAR-USB you wish to assign to this Device ID.

4. Click on the OK button to close the “Edit Device ID” dialog.

5. Highlight/select the second device.

6. Click on “Edit Device…” to launch the “Edit Device ID” dialog.

7. Expand the Serial Number pull-down and select the Serial Number on

the RAR-USB you wish to assign to this Device ID (assure it is not the

same serial number selected in step C).

8. Click on the OK button to close the “Edit Device ID” dialog.

9. Click on the Check Device Setup button on the Device Id Setup Utility

dialog.

10. Verify the message “The current device setup is valid.” appears in the

Device Setup Validation Status window.

11. Click on the Apply button in the lower right corner of the Device Id

Setup Utility dialog.

12. Close the “AR-STREAM-SW USB Device Setup” application.

Software Installation Software Installation under Linux

RAR-USB User's Manual 12

Installation Verification under Windows

To verify the device driver is properly installed, execute the Test

Configuration program.

1. Under Windows 7, XP and Server 2008R2

a. Click Start, then Programs.

b. Find and expand the Abaco AR-STREAM-SW program group

c. Invoke the Test RAR-USB Installation shortcut located therein.

2. Under Windows 8, 8.1 and Server 2012R1+R2

a. Display “Apps by name”.

b. Find and invoke the Test RAR-USB Installation shortcut.

3. Under Windows 10 and 11

a. Expand “All apps”.

b. Scroll down and expand the Abaco AR-STREAM-SW

application group.

c. Invoke the Test RAR-USB Installation shortcut beneath.

You should verify the CONFIG LED on the top of the RAR-USB

illuminates within a few seconds of invocation (and for multiple RAR-

USB device installations, indicates the expected RAR-USB device

referenced by the Device ID supplied). This program executes an internal

wrap test on all available channels and notifies you of success or failure. If

the program reports success on all channels tested, you are ready to use

your RAR-USB device.

Software Installation under Linux

Abaco Systems provides the RAR-USB Linux distribution package,

divided into two sections:

1. The USB support requires using the libUSB library, and can be

installed or built from the source files at libusb.info. Abaco Systems

takes no responsibility for its usage, therefore all technical support

inquiries concerning this package must be directed to the package's

admin.

NOTE: The USB driver package does not support "sysfs"; instead, it

requires using the "ceidev.conf" file.

2. Second is the RAR-USB API distribution, consisting of an API library

and example application demonstrating how to use the library.

Software Installation Building Applications under Linux

RAR-USB User's Manual 13

Installing the RAR-USB Linux distribution requires the RAR-USB device

be installed prior to execution of the following installation procedure:

1. You must log on as "root" (you may use "su")

13. Copy the Linux distribution compressed tar file

(linux_rar_usb_vnnn.tgz) to the /root directory.

14. Uncompress and extract the installation file using the following:

 tar -zxvf linux_rar_usb_vnnn.tgz

After the tarball extraction completes, the following directory structure

will be created:

Building Applications under Linux

Automatic Installation (Builds LSP and API)

Navigate to the Install directory and run the installation script by typing

 ./install usb

These are the configuration arguments that are accepted by the "install"

script:

1. To debug the kernel device driver(s), include the option

"debug_drv=<DEBUG LEVEL>" in the "./install" command line. The

debug statements will be printed out to the kernel message log. The

<DEBUG LEVEL> provides increasing debug information with a

range of "0" (none) to "3" (all).

15. To debug the low level library, include "debug_ll" in the "./install"

command line. The debug statements will be printed to stdout.

16. To build the low-level and API libraries as 32-bit libraries to run in 32-

bit emulation mode for 64-bit systems, include "32bit" in the "./install"

command line.

The installation is finished. Check the "install" script output and the kernel

message log for any errors. If there are no errors then the device driver is

Software Installation Building Applications under Linux

RAR-USB User's Manual 14

loaded into the kernel, low-level library is built, and the API distribution is

ready to verify. To test the installation, navigate to the Examples directory

and execute the exapp (or exapp64) application.

Manual Installation

Refer to the file Linux_install.txt in your distribution, section "Manual

Install" concerning the manual installation of the Linux distribution and/or

driver.

RAR-USB User's Manual 15

CHAPTER 3

RAR-USB Product Features

Overview

The RAR-USB product provides specialized features for receive message

storage and time-tagging, timer usage, and transmit message scheduling.

The following paragraphs document several of these features, and how

they might be used in your ARINC application.

Programmable Transmit Channel Tri-State Control

The RAR-USB provides the ability to tri-state the transmitter output at the

I/O connector pins using the Transmit Disable Bit, allowing any device

connected to the respective I/O pins to drive ARINC 429/717 levels on the

same bus with no adverse effect. The transmitter outputs will drive the

respective transmit lines low until disabled by the host application.

Controlling the state of the Transmit Disable Bit is performed using the

AR_SET_DEVICE_CONFIG API routine with the ARU_TX_DISABLE

option; control of individual channel transmission or reception message

processing is provided using the AR_SET_DEVICE_CONFIG API

routine with the ARU_TX_FIFO_ENABLE and

ARU_RX_FIFO_ENABLE options, respectively.

ARINC 429 Protocol Support

Several aspects of the ARINC 429 protocol are handled by the RAR-USB

product.

The electrical transmission of ARINC 429 data over the bus is performed

with the label field in reverse bit order. The transmit logic of the RAR-

USB product automatically reverses the bit order of the ARINC 429

message label (message bits b0-b7) prior to transmission. The receiver

logic of the RAR-USB also reverses the bit order of the ARINC 429

RAR-USB Product Features ARINC 573/717 Protocol Support

RAR-USB User's Manual 16

message label prior to placing the data in the respective receive buffers.

This ARINC 429 label modification is fixed in the RAR-USB processing

and cannot be modified by the application. For more information on the

ARINC 429 protocol, see the “ARINC Tutorial” document.

ARINC 429 message parity is defined in the MSB of the ARINC 429

message. The RAR-USB transmission logic provides the capability to

generate either odd or even parity based on the bit states of the first 31 bits

of the ARINC 429 message. When disabled, the transmitter logic

transmits the ARINC 429 message with the parity bit unaltered. When

enabled, the RAR-USB product overwrites the value of the parity bit in the

32-bit user-defined message with the calculated parity value.

The RAR-USB reception logic provides the capability to detect the parity

of ARINC 429 messages based on the bit states of each message. When

disabled, the receiver logic provides the full ARINC 429 message as it was

received, (without modification). If enabled, the receiver logic modifies

the state of the parity bit (b32) to be “0” if the parity was detected as odd

and “1” if the parity was detected to be even.

The bus speed for both ARINC 429 transmission and reception may be

programmed to any baud rate from 3.9Kbps to 800Kbps; however, the

transmitted signal slew rate doesn’t provide for a viable signal beyond

150Kbps.

The API routine AR_SET_DEVICE_CONFIG provides the method to

assign transmit and receive channel bus speed and parity selections for

your device (using options ARU_TX_BITRATE/ ARU_RX_BITRATE

and ARU_TX_PARITY/ ARU_RX_PARITY, respectively).

ARINC 573/717 Protocol Support

Several aspects of the ARINC 573/717 HBP and BPRZ protocols are

handled by the RAR-USB product.

The electrical transmission of ARINC 573/717 data over the bus is

performed at various bus speed/sub-frame size combinations resulting in

the standard four-second frame duration. Each frame consists of four sub-

frames comprised of a sub-frame sync word and subsequent data words.

Each sync and data word is 12 bits long, transmitted in LSB-MSB order.

The transmit logic of a RAR-USB board relies on the application to supply

the frame data in a 16-bit unsigned integer array in which only the lower

12 bits of each 16-bit element are used. The application must supply the

applicable sub-frame sync words and data in the respective locations

within this array for proper frame transmission.

The receiver logic of a RAR-USB board supports both raw and auto-

synchronized frame data reception. With raw data frame data reception,

RAR-USB Product Features RAR-USB Timers

RAR-USB User's Manual 17

the data captured and provided to the application is organized in the least

significant 12-bits of each element of a 16-bit unsigned integer array,

based on the first detected bit transition. With auto-synchronized frame

data reception, four application-provided sub-frame sync words are used

by the RAR-USB ARINC 717 receive logic to synchronize reception and

data logging to a detected sub-frame sequence. The sub-frame detection is

based both on the provided sub-frame sync word bit patterns and the

specified sub-frame size.

The API routine AR_SET_573_CONFIG provides the method to set

transmit and receive channel bus speed and frame size options for your

device.

RAR-USB Timers

The RAR-USB product supports two independent timers, a 64-bit one-

microsecond timer and an optional IRIG timer. The one-microsecond

timer is utilized for all ARINC 429 receive message time-tagging. It can

be assigned to any 64-bit value by the host at any time.

Specified in microseconds from January 1st of the current year, received

IRIG time is based on an external IRIG reference connected to the IRIG

input of the RAR-USB device (see the section, “IRIG B Signal

Connections” for the procedure to connect the RAR-USB” device to the

IRIG source). If the IRIG time reference is desired, but no external IRIG

source is available, the RAR-USB IRIG generator may be internally

wrapped and used as the time source (see the

ARU_IRIG_WRAP_ENABLE option of AR_SET_DEVICE_CONFIG);

however, if the RAR-USB IRIG generator is to be used by other data

collection hardware in your system, it is best to externally connect the

RAR-USB IRIG output to its IRIG input. The RAR-USB IRIG generator

can be reset by the host application to any desired value using the standard

IRIG time format, (see AR_SET_TIME).

A user-programmable compensation to the RAR-USB IRIG time value

can be defined when a consistent offset to the IRIG source time value is

desired. This compensation should be used when a consistent skew in

IRIG time-tagging is encountered between ARINC 429 events occurring

on the RAR-USB and other IRIG time-tagged components in your system.

This offset can be specified via the ARU_IRIG_SET_BIAS option of

AR_SET_DEVICE_CONFIG.

An IRIG DAC threshold adjustment procedure is provided that configures

the RAR-USB device IRIG receiver for optimal signal reception. This

procedure is usually not necessary; however, it may be required if IRIG

timing appears unstable from a known good source.

First, test the stability of the IRIG signal by invoking

AR_GET_DEVICE_CONFIG with the option

RAR-USB Product Features Receive Message Time-tagging and Timer Usage

RAR-USB User's Manual 18

ARU_IRIG_CALIBRATED. If this invocation returns a FALSE status,

the adjustment should be invoked through use of the AR_SET_CONFIG

routine with the ARU_IRIG_QUICK_ADJUSTMENT option. If the

quick DAC adjustment is not successful, a more thorough adjustment may

be performed. This adjustment is invoked through the

ARU_IRIG_ADJUST_THRESHOLD option of the

AR_SET_DEVICE_CONFIG routine. Execution of this IRIG adjustment

may require at least one minute and should be performed only during the

initialization of the board.

In addition to IRIG reception, RAR-USB product can be configured to

generate IRIG time using on-board IRIG circuitry. The transmitted IRIG

time value is initialized to the host calendar time by the API, and can be

modified by the host application via AR_SET_TIME.

Receive Message Time-tagging and Timer Usage

The RAR-USB product time-stamps ARINC 429 received messages in the

merged receive buffer with a 64-bit one-microsecond time-tag. This time-

tag value is based on the on-board timer, recorded when the last bit of the

32-bit message is detected. The RAR-USB API supports multiple time-tag

reference methods based on this one-microsecond timer. The active timer

reference mode may be assigned by the host application by invoking the

API routine AR_SET_DEVICE_CONFIG, using the

ARU_RX_TIMETAG_MODE option and the selections discussed below.

This assignment determines the format of the timer/time-tag value returned

from all API invocations providing time-related information.

The following receive message time-tag and timer-read reference modes

are available for selection:

IRIG 64-Bit Time Reference

This time reference is based on the RAR-USB IRIG receiver, with the one-

second resolution extrapolated by the one-microsecond internal timer to

provide a somewhat accurate estimation of a one-microsecond IRIG

reference value. When the IRIG time reference is selected, all legacy

receive data API routines based on a 32-bit time-tag parameter return a

time-tag value with a resolution of one millisecond; while all receive data

API routines supporting a 64-bit time-tag will return an IRIG timer-based

time-tag.

The RAR-USB device records the internal timer value when the IRIG

signal is received and decoded, (referred to as IRIG Reference Time). The

API then calculates the offset between the IRIG Reference Time and the

received ARINC data time-tag. Finally, the API applies that offset to the

IRIG signal time value to produce an IRIG-reference message time stamp

for the received data, extrapolated to provide the 1 microsecond resolution.

RAR-USB Product Features Receive Message Time-tagging and Timer Usage

RAR-USB User's Manual 19

Internal 64-Bit One Microsecond Time Reference

This time reference is based on the RAR-USB device one-microsecond

timer. When this mode is active, all legacy receive data API routines

based on a 32-bit time-tag and all routines based on a 64-bit time-tag

return a time-tag value with a resolution of one microsecond. The 32-bit

time-tag is returned as the lower 32-bits of the 64-bit time-tag. This

internal timer can be reset by the host application to any value desired, (see

AR_SET_TIME).

Internal 32-Bit Twenty Microsecond Time Reference

This time reference is provided for backward compatibility to applications

designed around the CEI-710 or IP-429HD-based products. When this

mode is active, all legacy receive data API routines based on a 32-bit time-

tag return a time-tag value with a resolution of twenty microseconds; all

receive data API routines based on a single 64-bit time-tag value return a

32-bit value with a resolution of twenty microseconds (the upper 32-bits of

the time-tag is zero).

Internal 32-Bit One Millisecond Time Reference

This time reference is based on a scaled version of the RAR-USB device

one-microsecond timer. When this mode is active, all legacy receive data

API routines based on a 32-bit time-tag/timer value return a 32-bit value

with a resolution of one millisecond; all receive data API routines based on

a 64-bit time-tag/timer value return a 64-bit value with a resolution of one

millisecond.

CEI-x20 Compatible Time Reference

This time-tag and timer option is not available as a selection via

AR_SET_CONFIG/ ARU_RX_TIMETAG_MODE; instead, this time

reference mode is selected when the CEI-x20 legacy API routine

AR_SET_TIMERRATE is invoked. In this mode, time references are

based on a programmable time-tag resolution specified through

AR_SET_TIMERRATE. When this mode is active, all receive data API

routines return a time-tag/timer value based on either a 32-bit or 64-bit

value scaled using the application-defined resolution. The message rate

and start offset attributes assigned to scheduled message table entries are

also scaled to the application-defined resolution.

RAR-USB Product Features Receive Message Buffering

RAR-USB User's Manual 20

Receive Message Buffering

The RAR-USB provides a single receive message storage method via the

Merged Receive Buffer. This buffer provides for time-based sequentially

ordered receive message buffering for multiple receive channels in a single

circular buffer. The merged buffer can store up to four seconds of

messages on 16 fully loaded receive channels before overflowing.

The AR-STREAM API maintains individual receive buffer and snapshot

buffer storage, simulating the same buffer storage features provided with

other Abaco Systems ARINC board products.

It is important to avoid a buffer overflow, as all messages received

subsequent to a buffer overflow will be lost. For this reason, when using

either of these circular buffer storage methods for data retrieval, the host

application should periodically flush the buffer(s). The API routines

AR_GETWORD*, AR_GETNEXT*, AR_GET_DATA*, and

AR_GET_BLOCK* are provided to support various data retrieval

methods for retrieving messages from the receive buffer(s).

Receive Buffer Entry Format

The format for the Merged Receive Buffer message entry is dependent on

the protocol of the received data. The protocol data format is described as

follows:

ARINC 429/575 Data Format

31 30 – 10 9 - 8 7 - 0

Parity Indication or
ARINC Data MSB

ARINC Data
SDI bits or ARINC Data

bits 0-1
ARINC Label (MSB –

LSB)

If the Parity Enable bit is set to one in the respective Receive Channel

Configuration register, the Parity Indication is set by the device to indicate

the parity of the message. A Parity Indication bit value of zero indicates

this message was received with ODD parity, where a Parity Indication

value of one indicates the message was received with EVEN parity. If the

Receive Configuration register Parity Enable bit is set to zero, this bit is

not manipulated by the device; instead, it reflects the value of bit 31 as

transmitted from the ARINC 429 source.

RAR-USB Product Features ARINC 429 Receive Label Filtering

RAR-USB User's Manual 21

ARINC 573/717 Data Format

31 – 16 15 14 13 - 12 11 – 0

Unused Sync Indication Unused Sub-frame Identification Data Word

When the Sync Indication bit is set to one, it is an indication this word was

detected as a sub-frame sync word. A Sync Indication bit value of zero

indicates the message was treated as a data word. The Sub-frame

Identification bit field identifies the sub-frame assignment for this word;

where a value of one indicates sub-frame 1, two indicates sub-frame 2,

three indicates sub-frame 3, and zero indicates sub-frame 4. The data

word contains the 12-bit value designated as ARINC 717 frame data.

ARINC 429 Receive Label Filtering

The RAR-USB product provides the capability to filter received ARINC

429 messages from storage in the merged receive buffer. The filter

definition for ARINC 429 message filtering is based on the combination of

matching 8-bit Label value, 2-bit SDI field value, and 3-bit ESSM field

value, with these fields defined within a 32-bit ARINC 429 message as

follows:

eSSM SDI Label

30, 29, 28 9, 8 7, 6, 5, 4, 3, 2, 1, 0

Each receiver contains a separate label filter table section in which the

filter definition is applied. This table is used by the RAR-USB firmware

to control storage of received messages to the merged receive buffer.

Transmit Message Processing Methods

The RAR-USB product provides an individual transmit message buffer

mechanization for each installed transmit channel, with three methods of

invoking message transmission for the ARINC 429 protocol:

1. Burst Transmission

2. Message Scheduler

3. Transmit Playback

While the Burst Transmission method is always available for use by the

host application, use of the Message Scheduler and Transmit Playback

features are mutually exclusive. This is due to the potential for significant

conflict of message transmission programmed by these two methods.

The method for invoking ARINC 573/717 transmission is based on burst

transmission from a single large circular buffer.

RAR-USB Product Features Transmit Message Processing Methods

RAR-USB User's Manual 22

ARINC 429 Burst Transmission

Direct access by the host application to individual transmit message

buffers is supported for the ARINC 429 protocol. Messages are

transmitted in the order they are inserted into individual transmit message

buffers at the speed at which the respective bus is programmed. General

methods supported by the RAR-USB API for inserting messages into

transmit buffers include AR_PUTWORD and AR_PUT_429_MESSAGE

for single message insertion, and AR_PUTBLOCK and

AR_PUTBLOCK_MULTI_CHAN for multiple message insertion. The

individual transmit message format for each of these methods is described

as follows:

ARINC 429/575 Data Format

31 30 – 10 9 – 8 7 - 0

Parity Bit or ARINC
Data MSB

ARINC Data
SDI bits or ARINC

Data bits 0-1

ARINC Label

(MSB – LSB)

If ODD or EVEN Parity is enabled for the respective Transmit Channel,

bit 31 of the 32-bit data word will be overwritten by the device. The value

assigned to bit 31 is based on the parity type and bit content of the

remaining 31 bits. If Parity is disabled for the respective channel, bit 31

remains unchanged from the value provided.

ARINC 717 Frame Transmission

Direct access by the host application to a single ARINC 573/717 transmit

message buffer is provided. Frames are transmitted in the order they are

inserted into the transmit buffer at the speed at which the bus is

programmed. General methods supported by the RAR-USB API for

inserting messages into the ARINC 717 transmit buffers include

AR_PUTWORD for single message insertion, and

AR_PUT_573_FRAME for full ARINC 573/717 frame transmission. The

individual transmit message format for these methods is described as

follows:

ARINC 573/717 Data Format

31 – 12 11 – 0

Unused Data Word

ARINC 573/717 data is assigned to the lower 12 bits of the 32-bit word for

AR_PUTWORD or the lower 12 bits of each 16-bit array elements for

AR_PUT_573_FRAME.

RAR-USB Product Features Transmit Message Processing Methods

RAR-USB User's Manual 23

ARINC 429 Periodic Message Scheduling

The RAR-USB message scheduling feature supports periodic message

transmission of ARINC 429 messages, with a total of 1024 message

entries. It is programmed by writing message and rate information to the

Message Scheduler table, supported by the API routines

AR_DEFINE_MSG, AR_DEFINE_MSG_BLOCK, AR_MODIFY_MSG,

and AR_MODIFY_MSG_BLOCK. As a part of the API initialization of

the device, the Message Scheduler table is reset to an empty state. Once

entries are defined by the host application, message scheduling is enabled

by invoking the AR_GO routine.

When enabled, the Message Scheduler queries each table entry on a one

millisecond basis, checking for all messages required for transmission at

that particular millisecond value. The entire table is processed each

millisecond, with the lowest table entry being processed first and highest

table entry last. When invoking AR_STOP or AR_RESET, it is important

to note the scheduler processing responds only to being disabled at the

beginning of a one millisecond epoch. If the scheduler is requested to

disable in the middle of creating scheduled traffic, all of the ARINC

messages previously scheduled for that millisecond are loaded into the

various transmit buffers before the scheduler transitions to idle.

The efficiency of the Message Scheduler is based on the number of

defined messages and the frequency at which those messages are

transmitted. While the Message Scheduler feature is designed to be very

accurate, there are ways in which the host application definition of

channel-specific message transmission scenarios may cause deviations in

the periodic transmission of the messages defined therein. The most

common deviation is referred to as message rate skew.

Message Rate Skew

Message rate skew is defined as the characteristic of a scheduled message

appearing on the bus at a rate that is either above or below the defined rate

by a significant percentage. Message rate skew typically occurs when

several different message rates are defined simultaneously on the same

channel, and a majority of these message rates are multiples of the other

message rates. The example below illustrates this situation.

Assuming there are three groups of messages being transmitted at rates of

100 msec (referenced as block A), 200 msec (block B) and 300 msec

(block C). If messages from each of the different rate groups were defined

in the order of rate priority using same initial starting point of reference,

the transmission of data would be defined as follows:

Time Group

100 A

200 A,B

300 A,C

RAR-USB Product Features Transmit Message Processing Methods

RAR-USB User's Manual 24

Time Group

400 A,B

500 A

600 A,B,C

repeat…

If we assume that each group of messages requires 10 msec to transmit, we

can expand the timeline in more detail as follows:

Time Group

100 A

200 A

210 B

300 A

310 C

400 A

410 B

500 A

600 A

610 B

620 C

700 A

800 A

810 B

900 A

910 C

etc.

The time between the first two occurrences of the 300 msec message group

(block C) is 310 msec. The time between the second and third occurrences

of this group is 290 msec. Message skew like this is unpredictable as the

number of different message rates increases.

The solution to this problem is to use the start offset feature of the message

scheduler, (see the description for AR_DEFINE_MSG). In the next

alternative example, the 300 msec message group was defined with a start

offset of 20 msec (see note below). In this scenario, no message rate skew

would occur, (as shown in the following timeline).

The 20 msec offset was derived as the sum of the duration required to transmit the groups
that precede this group in the scheduling order.

Time Group

100 A

200 A

210 B

300 A

320 C

400 A

410 B

500 A

Note:

RAR-USB Product Features Transmit Message Processing Methods

RAR-USB User's Manual 25

Time Group

600 A

610 B

620 C

700 A

800 A

810 B

900 A

920 C

etc.

In this transmission example, any start offset from 20 msec to 80 msec

would suffice for the 300msec (block C) message group. A start offset

greater than 90 msec would cause this message group to overlap into the

next scheduled frame for the block A message group and would

subsequently induce skewing for those messages.

If the three message rate groups were all even multiples of each other (e.g.

100, 200, and 400 msec) then rate skew would never occur. The good

news is that, although the slowest rate messages are most susceptible to

rate skew, they are also typically the most tolerant to variation in

transmission time.

Since the message scheduler processes all messages in the order of their

location in the schedule table, rate skew may also appear on faster rate

messages defined further into the table following slower rate messages.

This skew can be easily eliminated by defining faster rate messages first

and slower rate messages last.

In conclusion, if the minimum rate skew is desired on all transmitted

messages, you must make an a priority determination of the message

loading on each channel and insure messages are scheduled not only with

the fastest rates first, but taking full advantage of the start offset feature.

The AR-STREAM API provides a runtime utility routine

AR_ASSIGN_SCHEDULER_START_OFFSETS, designed to read the

current message scheduler channel and label rate content and assign start

offsets to each defined message on a best-fit rate-priority basis. This

routine should be called after all scheduled messages are defined, prior to

activation of message processing on the board.

If you desire manual control of the message transmission scenario, the AR-

STREAM-SW distribution provides a 32-bit Windows application in the

distribution folder \Help\Start Offset Assistant called gen_offsets.exe. This

application will generate the start offsets for the messages supplied for a

set of transmit channels, when supplied in the proper scheduled message

data structure input text file format. See the document

Start_Offset_Assistant.pdf located in the same folder for a description of

the application and input file format. Example input and output files are

provided to demonstrate the required format.

RAR-USB Product Features Transmit Message Processing Methods

RAR-USB User's Manual 26

ARINC 429 Transmit Playback Message Processing

The RAR-USB Transmit Playback feature supports timer-synchronized

transmission of ARINC 429 messages, providing a circular buffer of

53,248 playback message entries. It is programmed by writing playback

entries to the RAR-USB transmit playback buffer in time-sequential order.

Each playback entry consists of a 32-bit ARINC 429 message, a transmit

channel number, and a 64-bit 1 microsecond resolution playback time

value. Once entries are written to the buffer and Transmit Playback is

enabled, the Transmit Playback feature will initiate counting for the

internal 1-microsecond playback timer and sequentially transmit the

messages on the respective channel as each entry’s playback time matches

the current playback timer value.

Entries are written to the RAR-USB Transmit Playback buffer through the

API routine AR_WRITE_429_TRANSMIT_PLAYBACK. Once entries

are written to the Transmit Playback buffer, the Transmit Playback feature

is enabled via the routine AR_SET_DEVICE_CONFIG using the item

parameter option ARU_TX_PLAYBACK_ENABLE.

An example of a simple transmit playback scenario is shown below

(parity, data and SDI fields are zero for the purpose of this example). This

example consists of transmitting a mixture of a periodic 100 millisecond

(10Hz) message having a label value of o002 on transmit channel 2 (ch

index 1) with a burst of five aperiodic message blocks having a label value

of o224 (0x94) once per second on channel 5 (ch index 4), for a duration

of just over two seconds.

Playback Time (µsec) Message Channel Index

100000 0x00000002 1

200000 0x00000002 1

300000 0x00000002 1

400000 0x00000002 1

500000 0x00000002 1

600000 0x00000002 1

700000 0x00000002 1

800000 0x00000002 1

900000 0x00000002 1

910000 0x00000094 4

910000 0x00000094 4

910000 0x00000094 4

910000 0x00000094 4

910000 0x00000094 4

1000000 0x00000002 1

1100000 0x00000002 1

1200000 0x00000002 1

1300000 0x00000002 1

1400000 0x00000002 1

1500000 0x00000002 1

1600000 0x00000002 1

1700000 0x00000002 1

RAR-USB Product Features Avionics Discrete Inputs and Outputs

RAR-USB User's Manual 27

Playback Time (µsec) Message Channel Index

1800000 0x00000002 1

1900000 0x00000002 1

1910000 0x00000094 4

1910000 0x00000094 4

1910000 0x00000094 4

1910000 0x00000094 4

1910000 0x00000094 4

2000000 0x00000002 1

etc.

In this example, once Transmit Playback is enabled, label o002 will be

transmitted on each 100 millisecond interval, with label o224 burst

transmitted in a burst of consecutive messages on the bus on a 1 second

interval offset from the previous transmission of label o002 by precisely 10

milliseconds.

It is important to note that Playback Time values that are less than the

value of the current Playback Timer result in the Transmit Playback entry

being processed immediately and the message inserted in the respective

transmit channel buffer.

Avionics Discrete Inputs and Outputs

The RAR-USB provides for individually configurable bi-directional

Avionics Discrete Input/Output channels, used for general avionics-level

I/O interfacing. Each discrete output circuit is implemented as a low side

FET switch capable of sinking 500mA to ground, while the inputs are

single ended, protected (50V max), with a logic threshold of

approximately 2.0V. See the paragraph Avionics Discrete I/O for a

detailed description of the Discrete Input/Output circuit.

To assign a Discrete Output state, use the AR_SET_DEVICE_CONFIG

API call with the item parameter selection ARU_DISCRETE_OUT and

one of the following value parameter selections:

AR_LO Discrete Output set to 1 (FET ON – conduct to Ground)

AR_HI Discrete Output set to 0 (FET OFF – tri-state)

RAR-USB User's Manual 28

CHAPTER 4

BusTools/ARINC™ Data Bus Analyzer

General Information

BusTools/ARINC is an optional ARINC 429 analysis and simulation

utility which runs under Windows. It enhances the utility of an underlying

ARINC 429 interface board by expanding your scope of control and by

providing additional instrumentation and analytical tools. Additionally,

BusTools/ARINC provides support for devices configured with ARINC

561, 573/717, or Commercial Standard Digital Bus (CSDB) channels.

BusTools/ARINC supports usage of up to four boards at the same time

or independently and allows simultaneous control of all channels on each

board.

Its data logging function streams data to disk or memory and replays it in a

time-sequenced display. It provides multiple buffering mechanisms,

including real-time display of data in engineering units. Strings of

outgoing messages are generated, repeated, or automatically stepped

through a sequence. Strings of incoming messages are filtered and

captured for current or future analysis. A database of standard ARINC

429 translations is included. Translation among binary, hexadecimal, and

engineering units is provided, as is a powerful user-defined label facility.

BusTools/ARINC Demo Software

A free demo version of BusTools/ARINC is available on our web site at

‘https://www.abaco.com/products/bt-arinc-bustools-software-analyzer’.

The demo software operates over a simulated ARINC 429 interface board,

but is otherwise identical to the full version.

RAR-USB User's Manual 29

CHAPTER 5

AR-STREAM-SW Software Distribution

Overview

The AR-STREAM-SW software distribution contains all of the API and

example source files, libraries, and additional features necessary to support

RAR-USB board installation and use of under the Windows operating

system.

API Source Files

This library of utility routines provides the ability to write your own

programs to interface with an RAR-USB product. They are written in C

and delivered in a generic ANSI C compiler-compatible format. They can

be called from other languages by adhering to the procedures defined in

the applicable documentation. The API consists of the following C source

files:

SAR_API.C

This file contains the streaming device specific API functionality.

GEN_ARINC_API.C

This file contains the common ARINC 429/717 API functionality provided

with our existing Avionics ARINC product APIs. Most of these routines

provide backward compatibility to our other Avionics software

distributions at an API function and parameter definition level, limited to

those features available with the RAR-USB product.

AR-STREAM-SW Software Distribution API Source Files

RAR-USB User's Manual 30

SAR_PROCESS_THREAD.C

This file contains the functionality that interfaces with the streaming

device via the low-level USB driver interface.

SAR_API.H

This header file contains the majority of the API constants, data types, and

function prototypes required for host application development, and should

be included in all C/C++ programs that reference AR-STREAM API

routines.

SAR_TYPES.H

This header file contains AR-STREAM API private/internal definitions

and data structures.

SAR_ERROR.H

This header file contains the error string constant definitions utilized by the

API routine AR_Get_Error, describing each of the potential error codes

returned by the AR-STREAM API routines.

SAR_HW.H

This header file contains all of the API constants that define the hardware

interface for the RAR-USB architecture, included in SAR_TYPES.H.

CEI_TYPES.H

This header file contains all of the type defines for the various data types

used with the respective operating system and compiler; included in

SAR_TYPES.H.

SAR_OS_WIN.C

This file contains the C routines that interface directly with the Abaco

Systems common low-level driver interface library, CEI_Install.LIB/DLL,

supporting all Windows operating systems.

AR-STREAM-SW Software Distribution Windows Libraries

RAR-USB User's Manual 31

SAR_OS_LNX.C

This file contains the C routines that interface directly with the Abaco

Systems common Linux Support Package and libUSB library, supporting

Linux kernel version 3.x.

SAR_API.DEF and SAR_API64.DEF

These are the Windows DLL export definition files for 32-bit and 64-bit

Windows operating systems, respectively.

Windows Libraries

For the AR-STREAM-SW supported products, separate 32-bit and 64-bit

Windows API Libraries are provided. For Windows OS target

implementation, all API function prototypes are declared “_stdcall”. The

RAR-USB API library included in the installation is referenced as:

◼ sar_api_32.lib 32-bit Microsoft VS6.0 Library

◼ sar_api_32.dll 32-bit Microsoft VS6.0 DLL

◼ sar_api_64.lib 64-bit Microsoft VS2008 Library

◼ sar_api_64.dll 64-bit Microsoft VS2008 DLL

Included with the installation are the Abaco Systems USB Driver and

Abaco Systems Common Low-level driver interface and installation

verification libraries (not required for linking application programs):

◼ cei_install.dll 32-bit Microsoft VS6.0 DLL

◼ ceiusbar1_api_32.dll 32-bit Microsoft VS6.0 DLL

◼ cei_install64.dll 64-bit Microsoft VS2008 DLL

◼ ceiusbar1_api_64.dll 64-bit Microsoft VS2008 DLL

All DLLs are installed in the Windows “System” folder. The exact folder

name depends on the host version of Windows operating system. The 32-

bit versions of these DLLs are typically installed in either

‘c:\winnt\system32’ or ‘c:\windows\system32’ under 32-bit Windows or

‘c:\windows\syswow64’ under 64-bit Windows. The 64-bit versions of

these DLLs will be installed in the 64-bit Windows system folder

(typically ‘c:\windows\system32’ under 64-bit Windows).

AR-STREAM-SW Software Distribution Time-tag Structure Definition

RAR-USB User's Manual 32

Time-tag Structure Definition

The following API routines use the AR_TIMETAG_TYPE data structure

definition in providing the timer/time-tag reference or as an initial value

with a reset of the internal timer:

◼ AR_GET_TIME

◼ AR_SET_TIME

◼ AR_GETNEXT_XT

◼ AR_GETWORD_XT

◼ AR_GET_DATA_XT

◼ AR_CONVERT_TIME_TO_STRING

Under the Windows and VxWorks operating systems, the

AR_TIMETAG_TYPE data structure and pAR_TIMETAG_TYPE pointer

types used by these routines are defined to use 64-bit integer values, as

follows:

timeTagFormat __int64 or long long

 The format of the corresponding timeTag

structure member. Valid values for this

element are:

AR_TIMETAG_EXT_IRIG_64BIT

AR_TIMETAG_INT_USEC_64BIT

AR_TIMETAG_HOST_USEC_64BIT1

AR_TIMETAG_INT_20USEC_32BIT

AR_TIMETAG_INT_MSEC_32BIT

AR_TIMER_X20_COMPAT_32BIT

timeTag __int64 or long long

 The timer-referenced time-tag, formatted as

specified in the timeTagFormat structure

member.

referenceTimeTag __int64 or long long

 The original 64-bit, one microsecond RAR-

USB board timer/time-stamp value reference

1 This format returns the host OS system time value converted to have a 1

microsecond resolution, supported only by the API routine ar_get_time().

AR-STREAM-SW Software Distribution Return Status Values

RAR-USB User's Manual 33

for the time value supplied in the timeTag

member.

Setting the Device Time

When assigning an initial time reference, the host application may choose

to set either the device 1 microsecond timer or the IRIG generator timer

via invocation of AR_SET_TIME.

When AR_SET_TIME is invoked with an AR_TIMETAG_TYPE data

structure parameter timeTagFormat member defined to be

AR_TIMETAG_EXT_IRIG_64BIT, the format of the timeTag member is

defined as a 30-bit entity of BCD-like values using the following format:

29-28 27-24 23-20 19-18 17-14 13-11 10-7 6-4 3-0

hundreds
of days

tens of
days

days tens of
hours

hours tens of
minutes

minutes tens of
seconds

seconds

When AR_SET_TIME is invoked with a timeTagFormat member defined

to be AR_TIMETAG_INT_USEC_64BIT, the timeTag member is

referenced as a 64-bit 1 microsecond timer value.

Return Status Values

The following return status values are used by the RAR-USB API routines.

They are defined in the C header file SAR_API.H and are used in the

following context:

C Constant Value Constant Definition

ARS_FAILURE -1 Requested operation failed

ARS_NODATA 0 No data was detected or received

ARS_NORMAL 1 Normal successful completion

ARS_GOTDATA 4 Data was received

ARS_BAD_MESSAGE 5 Receipt of an invalid ARINC

429 message was detected

ARS_INVHARVAL 1003 Invalid configuration value

ARS_XMITOVRFLO 1004 Transmit buffer overflow

ARS_INVBOARD 1005 Invalid board argument

ARS_NOSYNC 1006 Transmit buffer flush failed

ARS_MEMWRERR 1013 SRAM memory test error

ARS_INVARG 1019 General invalid argument value

ARS_DRIVERFAIL 1021 Driver failed to install or

uninstall the ISR

AR-STREAM-SW Software Distribution Programming with the AR-STREAM API Interface

RAR-USB User's Manual 34

C Constant Value Constant Definition

ARS_WINRTFAIL 1022 Device driver open failure

ARS_CHAN_TIMEOUT 1023 Channel timeout in receive

function

ARS_NO_HW_SUPRT 1024 Function not supported by

specified hardware

ARS_WRAP_DATA_FAIL 1031 BIT wrap test data read-back fail

ARS_WRAP_FLUSH_FAIL 1035 BIT cannot execute external

wrap test due to unknown

external data reception

ARS_WRAP_DROP_FAIL 1036 BIT wrap test data not received

ARS_BOARD_MUTEX 1038 API routine failed to acquire or

release a shared resource lock

mechanism

ARS_NO_OS_SUPPORT 1041 There is no operating system

support for the requested feature

ARS_ERR_SH_MEM_OBJ 1050 API failed to allocate a shared

object (semaphore or mutex)

ARS_ERR_SH_MEM_MAP 1051 API failed to allocate a shared

memory region (multi-process)

ARS_FW_NOT_SUPPORTE

D

1052 The firmware programmed on

the board is not compatible with

the API version in use.

Programming with the AR-STREAM API Interface

Communications over USB differs dramatically from motherboard or

backplane accessible busses such as PCI, PCI Express, CompactPCI or

PCMCIA, in that USB latency due to operating system intervention cannot

be controlled by the application, API, or driver interface. While most

internal bus interfaces provide direct and almost immediate access from

the host application to the hardware on the device, access to a USB device

is restricted by the operating system and its interaction with the associated

USB device driver. Latency in the interaction between the AR-STREAM

API and the RAR-USB can range from negligible to in excess of 500

milliseconds, depending on the resources and CPU time other active

processes might be simultaneously requesting from the host o/s. For this

reason, application requested interaction between the API and the RAR-

USB is restricted to queued operations bundled via background scheduled

periodic download/upload data requests in efficient, block transactions.

With this API design method, completion of any API function that relates

to the modification of a device, channel, or individual message attribute

AR-STREAM-SW Software Distribution Programming with the AR-STREAM API Interface

RAR-USB User's Manual 35

does not guarantee the RAR-USB device has received the intended

programmed information; instead, completion of an API function

invocation only guarantees the information has been processed by the API

and will be updated on the RAR-USB device during the next set of USB

block transactions. The AR-STREAM API provides the routine

ar_block_on_device_update that blocks application execution until the

device has been updated, preventing unintended system dependencies in

the application. In some limited cases such as the AR_GO and AR_STOP

routines, this block on execution is built into the AR-STREAM API.

Following the outline below, you can easily incorporate the RAR-USB

into your application.

1. For your application to interface to any AR-STREAM-SW supported

products the device must first be initialized. Invoke the AR_OPEN

routine with parameters as described in the API Routines section to

open a session and initialize the RAR-USB.

17. Assign the characteristics of the transmit and receive channels if the

default configuration is not appropriate. This is performed with

multiple invocations of either AR_SET_DEVICE_CONFIG or

AR_SET_CONFIG.

18. Select the desired receive buffer mode based on individual

channel/protocol usage via the routine AR_SET_DEVICE_CONFIG.

Using buffered mode for multiple channels of the same protocol

provides channel-specific access to received data, where merged mode

provides for single receive channel access to selected channel data.

19. Once channel configuration is complete, invoke AR_GO to initiate

data processing.

20. Then invoke AR_PUT_429_MESSAGE and

AR_GET_429_MESSAGE to send and receive single ARINC 429

messages, respectively.

21. When communication is complete, invoke AR_STOP to suspend

active data processing.

Subsequently, you could invoke AR_GO again to restart the interface.

22. On termination of the application, invoke AR_CLOSE to release all

resources acquired during initialization. It is very important that all

applications invoke AR_CLOSE upon termination; otherwise, the

operating system does not release the memory acquired when the API

was initialized.

The example wrap program source code, contained in

EXAMPLE_APPLICATION.C, is supplied with your installation. This

program demonstrates the use of the API for the ARINC 429 and 717

protocols.

When calling the utility routines that return a status value, it is important to

verify the returned status indicates success; otherwise, the application may

AR-STREAM-SW Software Distribution Example Routines – Summary

RAR-USB User's Manual 36

not be aware that an important function may have failed to fulfill a

requested operation.

Example Routines – Summary

Example applications demonstrating various RAR-USB API features are

provided in C source format, as described in the following paragraphs.

EXAMPLE_APPLICATION.C

The example source file EXAMPLE_APPLICATION.C is included with

your installation. To access this example executable under the Windows

operating system:

1. Click on start, and then Programs.

23. Select AR-STREAM-SW and then Test RAR-USB Installation.

Within EXAMPLE_APPLICATION.C are application-style routines

demonstrating use of the API routines for the various features provided:

test_basic_arinc_429 An internal wrap test designed to

demonstrate ARINC 429 API usage. This

routine enables internal wrap on all 429

receive channels. It also assigns a bus speed

of 12.5kbps and ODD parity to both transmit

and receive channels. Ten ARINC 429

messages are sent on each transmit channel

and proper reception verified on the

respective receive channel.

demo_advanced_arinc_429 A demonstration of the following advanced

features available with RAR-USB products:

Transmit Message Scheduling

Enhanced Label/SDI/ESSM Data Filtering

Snapshot Message Data Acquisition

Enhanced Time-tag Reset and Conversion

IRIG Time-tag Selection (if installed on hardware)

demo_429_transmit_playback A demonstration of the ARINC 429

transmit playback feature

demo_discrete_io_features A demonstration on the use of the Discrete

I/O Channels and the respective API

routines

demo_irig_features A demonstration of IRIG features requiring

an external IRIG connection:

IRIG DAC Threshold Adjustment

AR-STREAM-SW Software Distribution Dealing with Complex Message Scheduler Transmit Scenarios

RAR-USB User's Manual 37

IRIG Bias (Offset) Time Assignment

IRIG Validity Determination

IRIG Time Conversion and Display

test_arinc_717 An internal wrap test designed to

demonstrate ARINC 573/717 API usage.

This routine enables internal wrap on the

ARINC 573/717 receive channel. It also

assigns a bus speed 768bps, a sub-frame size

of 64 words, and a BPRZ selection to the

ARINC 573/717 transmit and receive

channels. A frame consisting of a data

pattern incrementing from $01 to $FF and

sync words of $123, $224, $325, and $426 is

transmitted and proper reception verified.

Dealing with Complex Message Scheduler Transmit Scenarios

Whether a transmit channel is operating at 100Kbps or 12.5Kbps, any

scheduled message scenario that introduces as little as 50% bus loading is

susceptible to message rate skew. The ability to assign proper offsets to

the scheduled message rate definitions can become cumbersome in such

situations. For these cases two options are provided:

The Start Offset Assistant utility will accept an input text file containing a

C-like message scheduler structure array layout with defined channel

message scenarios and generate an output text file with assigned start

offset values. The contents of the output text file can then be copied as a C

data structure array into the application source, to be used with the API’s

message scheduler support routines. See the “Start Offset Assistant”

User’s Manual in the folder \Utilties\Start Offset Assistant within this

distribution for a detailed description on the use of this tool.

The AR-STREAM API also provides a utility routine that will update the

contents of the existing message scheduler table with start offset values

calculated in a best attempt to avoid rate skew based on the programmed

bus speed for individual transmit channels. The start offset values are

computed based on the message count and rates defined per transmit

channel. For more details, see the routine description

ar_assign_scheduler_start_offsets within this document.

RAR-USB User's Manual 38

CHAPTER 6

Program Interface Library

Overview

Abaco Systems supplies an extensive software Application Programming

Interface (API) for the RAR-USB product, distributed as AR-STREAM-

SW. API routines are supplied to setup the interface, configure channel

attributes, and transmit and receive ARINC 429 and 717 messages.

API Routines - Summary

The routines provided in the API supporting the RAR-USB device

features, (with backward compatibility to most of our legacy ARINC

API’s), are categorized and summarized in the following pages:

Initialization and Control Routines

ar_open The main initialization routine acquiring the

resources for the PCI memory regions and

initializing the RAR-USB device.

ar_board_test Verifies the RAR-USB data processing

capabilities via internal/external data wrap.

ar_loadslv A legacy version of the ar_open routine.

Device Control Routines

ar_go Enables RAR-USB ARINC data processing.

ar_reset Disables RAR-USB ARINC data processing

and initializes the device to the default state.

ar_stop Disables RAR-USB ARINC data

processing.

Program Interface Library API Routines - Summary

RAR-USB User's Manual 39

Termination Routines

ar_close Releases all resources for the specified

device.

Receive/Transmit Channel-level Configuration Routines

ar_set_device_config As the main channel configuration routine, it

assigns ARINC 429-specific transmitter and

receiver channel configuration information.

ar_get_device_config Retrieves the value of a bit field for I/O and

ARINC 429 transmitter or receiver channel

configuration registers.

ar_enh_label_filter Assigns the enhanced label filter table

definition for each RAR-USB device

receiver.

ar_get_config Retrieves board-level configuration and API

local attribute values.

ar_get_573_config Retrieves the value of a bit field for an

ARINC 573/717 transmitter or receiver

channel configuration register.

ar_get_filter Retrieves the specified label filter buffer

entry from the enhanced label filter table.

ar_get_label_filter Retrieves the active state of label filtering

for a single label on all receivers.

ar_label_filter Assigns ARINC 429 label values to be

filtered by the specified receive channel.

ar_putfilter Places the specified label filter buffer entry

in the enhanced label filter table.

ar_set_config Assigns board-level configuration and API

local attribute values.

ar_set_573_config Assigns ARINC 573/717 transmitter and

receiver channel configuration information.

Device-level Configuration Routines

ar_get_storage_mode Retrieves the current selected API data

storage mode.

ar_set_raw_mode Assigns both transmitter and receiver parity

state on the specified ARINC 429 channel.

Program Interface Library API Routines - Summary

RAR-USB User's Manual 40

ar_set_storage_mode Assigns the API data storage mode.

Receive Data Processing Routines

ar_get_429_message Retrieves the next ARINC 429 message

from a receive buffer. Optionally, it waits

up to ½ second for data to become available.

ar_get_573_frame Retrieves a specified number of ARINC 573

data words from the receive buffer.

ar_getnext Retrieves the next message from the

specified receive buffer. It waits up to ½

second for data to become available.

ar_getnextt Retrieves the next message and a 32-bit, 20

sec time-tag from the specified receive

buffer. It waits up to ½ second for data to

become available.

ar_getnext_xt Retrieves the next message with a 64-bit,

user-programmable time-tag from the

specified receive buffer. It waits up to ½

second for data to become available.

ar_getword Retrieves the next message from the

specified receive buffer.

ar_getwordt Retrieves the next message and a 32-bit, 20

sec time-tag from the specified receive

buffer.

ar_getwordt_xt Retrieves the next message from the

specified receive buffer with a 64-bit, user-

programmable time-tag.

ar_get_data Retrieves the next available data and the 64-

bit, 1 sec time-tag from a receive buffer.

ar_get_data_xt Retrieves the next available data from a

receive buffer with a 64-bit, user-

programmable time-tag.

ar_getblock Retrieves all of the available ARINC 429

messages from the requested receive buffer

with 32-bit time-tags.

ar_getblock_t Retrieves all of the available ARINC 429

messages from the requested receive buffer,

with 64-bit time-tags.

Program Interface Library API Routines - Summary

RAR-USB User's Manual 41

ar_get_latest Retrieves the latest message from the

snapshot buffer for the specified

channel/label combination.

ar_get_latest_t Retrieves the latest message and time-tag

from the snapshot buffer for the specified

channel/label combination.

ar_get_snap_data Retrieves the latest message from the API

snapshot buffer for the specified

channel/label/sdi combination.

Transmit Data Processing Routines

ar_assign_scheduler_start_offsets Computes and applies best fit

start offset values for each transmit channel

message scenario defined in the message

scheduler table.

ar_define_msg Defines a scheduled ARINC 429 message.

ar_define_msg_block Defines a block of scheduled ARINC 429

messages.

ar_modify_msg Modifies an existing ARINC 429 message

already defined for periodic transmission.

ar_modify_msg_block Modifies a block of ARINC 429 messages

already defined for periodic transmission.

ar_put_429_message Places a single message in the specified

ARINC 429 transmit buffer.

ar_put_573_frame Places a specified number of ARINC 573

data words in the transmit buffer.

ar_putword Places a single message in the specified

ARINC 429 transmit buffer.

ar_putblock Places multiple messages in a single

ARINC 429 transmit buffer.

ar_putblock_multi_chan Places multiple messages in multiple

ARINC 429 transmit buffers.

ar_write_429_transmit_playback Places transmit playback entries

in the ARINC 429 transmit playback buffer

Timer-related Routines

ar_get_time Retrieves the current hardware reference

time based on the selected timer mode.

Program Interface Library API Routines - Summary

RAR-USB User's Manual 42

ar_get_timercntl Retrieves the current value of the OS timer.

ar_reset_timercnt Resets the internal timer/time-tag reference

to zero.

ar_set_timerrate Assigns the RAR-USB compatible timer

resolution for use with ar_get_time() and

any ARINC 429 receive data routines

returning 32-bit time-tag values.

ar_set_time Sets the internal clock/timer or IRIG time

generator to an application supplied value.

Information and Status Routines

ar_get_boardname Returns a string description of the specified

device.

ar_get_boardtype Retrieves the target device configuration.

ar_get_error Retrieves a message string associated with a

given error status code.

ar_get_rx_channel_status Reports the current buffer state of the

specified ARINC 429 receive channel.

ar_get_status Retrieves the combined state of each receive

FIFO status register Data Available bit.

ar_num_rchans Retrieves the number of receive channels

supplied by the RAR-USB device.

ar_num_xchans Retrieves the number of transmit channels

supplied by the RAR-USB device.

Utility Routines

ar_block_on_device_update Blocks the calling application execution

until the next device update has completed.

ar_clr_rx_count Resets the counter of received messages for

the specified receive channel.

ar_convert_time_to_string Converts a standard RAR-USB 64-bit time

value to character string.

ar_execute_bit Verifies the RAR-USB operational state

through various data wrap and timer tests.

ar_get_rx_count Returns the number of messages received

for the specified receive channel.

Program Interface Library API Routines - Summary

RAR-USB User's Manual 43

ar_set_multithread_protect Enable/disable multithread access protection

to all API routines accessing the hardware

interface of the device.

ar_set_preload_config Defines the thread setup for the calling

application.

ar_sleep Suspends the calling thread for a specified

number of milliseconds.

ar_wait Delays the calling application for the

specified number of seconds.

ar_version Retrieves the current software version

number of the RAR-USB API.

Program Interface Library AR_ASSIGN_SCHEDULER_START_OFFSETS

RAR-USB User's Manual 44

AR_ASSIGN_SCHEDULER_START_OFFSETS

CEI_INT32 ar_assign_scheduler_start_offsets (CEI_INT16 board)

This routine determines the appropriate start offset values for each transmit

channel message scenario as a best estimate to avoid rate skew on the

respective channel. It first reads all defined messages from the message

scheduler table (any message having a non-zero rate attribute), determines

the appropriate start offset value for all messages on a channel-by-channel

basis, and then updates the respective start offset values in the table.

This routine should be called immediately following the last invocation of

AR_DEFINE_MSG or AR_DEFINE_MSG_BLOCK, and must be called

prior to the invocation of AR_GO. The transmit channel bus speed for all

channels referenced in the message scheduler table entries must also be

assigned prior to calling this routine.

To assign start offset values to a scheduled message scenario prior to the

invocation of AR_DEFINE_MSG or AR_DEFINE_MSG_BLOCK, see

the Start Offset Assistant utility.

The start offset values defined by this routine do not account for bus timing issues and/or
message rate skew due to bursts of aperiodic messages invoked by the host application.

All start offset values assigned assume a continuous transmission of all messages defined
in the message scheduler table.

ARS_NORMAL Routine execution was successful.

ARS_FAILURE The specified device has not been initialized.

ARS_INVBOARD An invalid board parameter value was

provided or the specified device’s session is

not active.

ARS_LOCK_ACCESS_FAILED Releasing the access lock to the

API shared device interface data structure

failed.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

Syntax

Description

Notes:

Return Value

Arguments

Program Interface Library AR_ASSIGN_SCHEDULER_START_OFFSETS

RAR-USB User's Manual 45

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

Program Interface Library AR_BLOCK_ON_DEVICE_UPDATE

RAR-USB User's Manual 46

AR_BLOCK_ON_DEVICE_UPDATE

CEI_INT32 ar_block_on_device_update (CEI_INT16 board)

This routine will block caller execution until the next communication

sequence, consisting of download from the host and upload from the

device, has completed.

ARS_NORMAL Routine execution was successful.

ARS_FAILURE The specified device has not been initialized.

ARS_INVBOARD An invalid board parameter value was

provided or the specified device’s session is

not active.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_BOARD_TEST

RAR-USB User's Manual 47

AR_BOARD_TEST

CEI_INT16 ar_board_test (CEI_INT16 board, CEI_INT16 testType)

This routine tests the ARINC 429 message buffer processing functionality

of the streaming device, designed specifically for the initialization process.

It performs an internal or external wrap from each ARINC 429 transmit

channel matched to a respective receive channel, (unmatched receive

channels are not tested).

ARS_NORMAL Routine execution was successful.

ARS_FAILURE The specified device has not been initialized.

ARS_INVBOARD An invalid board parameter value was

provided or the specified device’s session is

not active.

ARS_WRAP_DROP_FAIL ARINC 429 wrap test data missing.

ARS_WRAP_DATA_FAIL ARINC 429 wrap test data pattern

mismatch.

ARS_WRAP_FLUSH_FAIL Unexpected data from an external source

was received during wrap test execution.

ARS_XMITOVRFLO A transmit buffer overrun occurred.

ARS_LOCK_ACCESS_TIMEOUT The access lock to the API

shared device interface data structure could

not be acquired.

ARS_LOCK_ACCESS_FAILED Releasing the access lock to the

API shared device interface data structure

failed.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

Syntax

Description

Return Value

Program Interface Library AR_BOARD_TEST

RAR-USB User's Manual 48

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

CEI_INT16 testType (input) Type of test to execute. Valid values

for this parameter are:

 INTERNAL_WRAP (0)

 EXTERNAL_WRAP (1)

Arguments

Program Interface Library AR_CLR_RX_COUNT

RAR-USB User's Manual 49

AR_CLR_RX_COUNT

CEI_VOID ar_clr_rx_count (CEI_INT16 board, CEI_INT16 channel)

This routine resets the API-maintained count of ARINC 429 messages

received by the specified channel to zero. The AR-STREAM API

maintains a count of ARINC 429 messages received over the bus interface

and uploaded to the API for each channel since the device was initialized,

accessed via the API routine AR_GET_RX_COUNT.

None

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

CEI_UINT32 channel (input) Specifies which receive channel’s

count value will be reset to zero. Valid

range is 0 to one less than the installed

receive channel count.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_CLOSE

RAR-USB User's Manual 50

AR_CLOSE

CEI_INT16 ar_close (CEI_INT16 board)

This routine releases all resources acquired during the initialization of the

specified device. Once this routine has been executed, invocation of other

API routines results in the return of an invalid status.

ARS_NORMAL Routine execution was successful.

ARS_FAILURE Failed to access a session or complete

termination.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_CONVERT_TIME_TO_STRING

RAR-USB User's Manual 51

AR_CONVERT_TIME_TO_STRING

void ar_convert_time_to_string (CEI_INT16 board, CEI_INT16

displayFormat, pAR_TIMETAG_TYPE timeIn, pCEI_CHAR timeString)

This routine converts the 64-bit time value provided in the timeIn structure

to a character string representation of date/time, format based on what is

specified via the displayFormat parameter. The supplied time format

(LSB resolution) must be specified in the timeIn structure member

timeTagFormat, representing the resolution of the respective timeTag

member data.

none.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

CEI_INT16 displayFormat (input) Format for returned string:

AR_TD_REL_MIDNIGHT (2) Relative to Midnight Format and

AR_TD_IRIG (1) Full IRIG Format, defined as

 "(DDD)hh:mm:ss.uuuuuu"

AR_TD_DATE (0) Date Format defined as

"(MM/DD)hh:mm:ss.uuuuuu"

pAR_TIMETAG_TYPE timeIn (input) Source time tag structure

pCEI_CHAR timeString (output) Pointer to destination

text string.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_DEFINE_MSG

RAR-USB User's Manual 52

AR_DEFINE_MSG

CEI_INT16 ar_define_msg (CEI_INT16 board, CEI_INT16 channel,

CEI_INT16 rate, CEI_UINT16 start, CEI_INT32 data)

This routine defines a 32-bit ARINC 429 message for periodic

retransmission at the specified rate. Once defined, the message rate,

content, or assigned channel may be altered via AR_MODIFY_MSG.

Any positive value between 0 and 1023 is the unique message scheduler

table entry index assigned to this message.

ARS_FAILURE Indicates the routine encountered an

uninitialized board, an invalid board/channel

parameter value, or a full message scheduler

table.

ARS_LOCK_ACCESS_FAILED Either the acquisition or

relinquish of the access lock to the API

shared device interface data structure failed.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

CEI_INT16 channel (input) Channel message scheduler table this

routine is to access. The valid range is 0 to

one less than the number of installed

transmit channels.

CEI_INT16 rate (input) Periodic transmission rate, defined in

milliseconds by default. For backward

compatibility to the CEI-x20 tick-timer

message rate method, when

AR_SET_TIMERRATE has been executed

to simulate the CEI-x20 tick-timer resolution

assignment within the AR-STREAM API,

the rate and start parameters is scaled to the

specified tick-timer resolution.

CEI_UINT16 start (input) Offset, (in milliseconds), from the

start of RAR-USB device message

Syntax

Description

Return Value

Arguments

Program Interface Library AR_DEFINE_MSG

RAR-USB User's Manual 53

processing at which this message will begin

its initial periodic transmission.

CEI_INT32 data (input) The 32-bit ARINC 429 message to

transmit.

Program Interface Library AR_DEFINE_MSG_BLOCK

RAR-USB User's Manual 54

AR_DEFINE_MSG_BLOCK

CEI_INT16 ar_define_msg_block (CEI_INT32 numberOfEntries,

pAR_SCHEDULED_MSG_ENTRY_TYPE messageEntry)

This routine defines a series of 32-bit ARINC 429 messages for periodic

retransmission at their specified rates. Once defined, the message rate,

content, or assigned channel for any individual message scheduler table

entry within this same structure may be altered via invocation of

AR_MODIFY_MSG_BLOCK.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An invalid board parameter value was

provided.

ARS_INVARG An invalid numberOfEntries parameter

value was provided.

ARS_INVHARVAL An invalid channel parameter value was

provided.

ARS_FAILURE The specified device has not been initialized.

ARS_LOCK_ACCESS_FAILED Either the acquisition or

relinquish of the access lock to the API

shared device interface data structure failed.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT32 numberOfEntries (input) The number of entries to define

from the subsequent structure pointer

parameter, messageEntry.

pAR_SCHEDULED_MSG_ENTRY_TYPE messageEntry (input)

 Array of structures of message definition content, defined as follows:

unsigned int messageIndex The unique message scheduler table entry

index assigned to this message. Upon

completion of this routine, the messageIndex

structure member will have been updated to

Syntax

Description

Return Value

Arguments

Program Interface Library AR_DEFINE_MSG_BLOCK

RAR-USB User's Manual 55

reflect the message scheduler table index

assigned to the respective message.

unsigned int board Device to access. Valid range is 0-127.

unsigned int channel Which channel portion of the message

scheduler table this routine is to access. The

valid range is 0 to one less than the number

of installed transmit channels.

unsigned int rate Periodic transmission rate, defined in

milliseconds by default. For backward

compatibility to the CEI-x20 tick-timer

message rate method, when

AR_SET_TIMERRATE has been executed

to simulate the CEI-x20 tick-timer resolution

assignment within the RAR-USB API, the

rate and start parameters will be scaled to the

specified tick-timer resolution.

unsigned int start Offset, (in milliseconds), from the start of

RAR-USB device message processing at

which this message will begin its initial

periodic transmission.

unsigned int txCount The total number of times this message will

be transmitted. The constant value

ARU_SCHED_MSG_INFINITE

(0xFFFFFFFF) indicates infinite

transmission of this message is requested.

unsigned int data The 32-bit ARINC 429 message to transmit.

Program Interface Library AR_ENH_LABEL_FILTER

RAR-USB User's Manual 56

AR_ENH_LABEL_FILTER

CEI_INT32 ar_enh_label_filter (CEI_INT16 board, CEI_INT16 channel,

CEI_UINT16 label, CEI_UINT16 sdi, CEI_UINT16 essm, CEI_INT16

action)

This routine supports the assignment of both a single entry in the enhanced

label filter table for the specified receive channel and channel-wide field

definitions for the entire channel filter table. The RAR-USB device

enhanced label filtering feature supports the ability to both filter ARINC

429 messages and generate a hardware interrupt based on reception of a

message matching the combined 8-bit label value, 2-bit SDI value, and 3-

bit ESSM value.

This routine should be used exclusive of the use of the legacy API routine
AR_LABEL_FILTER, as any filter table value assigned with one routine supersedes a
previous assignment with another.

Once message reception filtering has been enabled for a specified

channel/label/sdi/essm combination, data received with matching bit field

values will be discarded until label filtering for that specified message has

been disabled.

The label filtering feature is disabled for all labels/sdi/essm combinations

by default. Label filtering changes are effective immediately on

completion of this routine.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An invalid board parameter value was

provided.

ARS_INVHARVAL Invalid channel parameter value.

ARS_INVARG Invalid label, sdi, essm, or action parameter

value.

ARS_FAILURE The specified device has not been initialized.

ARS_LOCK_ACCESS_FAILED Either the acquisition or

relinquish of the access lock to the API

shared device interface data structure failed.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

Syntax

Description

Note:

Return Value

Program Interface Library AR_ENH_LABEL_FILTER

RAR-USB User's Manual 57

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

CEI_INT16 channel (input) Channel label filter table this routine

is to access. The valid range is 0 to one less

than the installed receive channel count.

CEI_UINT16 label (input) The label of interest. Valid range is

0-255. Also valid is ARU_ALL_LABELS

(511), which invokes the action for all

labels.

CEI_UINT16 sdi (input) The SDI field value of interest.

Valid range is 0-3. Also valid is

ARU_ALL_SDI (4), which invokes the

action for all SDI entries for the specified

label.

CEI_UINT16 essm (input) The ESSM field value of interest.

Valid range is 0-7. Also valid is

ARU_ALL_ESSM (8), which invokes the

action for all ESSM entries for the specified

label.

CEI_INT16 action (input) Enable or disable filtering action for

this table entry. Valid values are:

FILTER_SEQUENTIAL (0x10) enable filtering of the respective

message from the device’s merged receive buffer.

ARU_FILTER_ON (1) enable filtering of the respective

message from the device’s merged receive buffer.

ARU_FILTER_OFF (0) disable filtering (default state is to not

filter any labels).

Arguments

Program Interface Library AR_EXECUTE_BIT

RAR-USB User's Manual 58

AR_EXECUTE_BIT

CEI_INT16 ar_execute_bit (CEI_INT16 board, CEI_INT16 testType)

This routine performs hardware diagnostic test functionality normally

associated with device-level Built-In-Test (BIT). Testing ranges from a

partial SRAM pattern test to verification of ARINC 429 message wrap on

transmit/receive channel pair on the specified device.

All of these

ARS_NORMAL Routine execution was successful.

ARS_MEMWRERR Device SRAM test write/read/verify failure.

ARS_WRAP_DROP_FAIL ARINC 429 wrap test data missing.

ARS_WRAP_DATA_FAIL ARINC 429 wrap test data pattern

mismatch.

ARS_WRAP_FLUSH_FAIL Unknown external data received during

wrap test execution.

ARS_XMITOVRFLO A transmit buffer overrun occurred during

wrap test execution.

ARS_INVBOARD An invalid board parameter value was

provided.

ARS_INVARG Invalid testType parameter value.

ARS_FAILURE The specified device has not been initialized

or the timer-deviation test failed.

ARS_LOCK_ACCESS_FAILED Either the acquisition or

relinquish of the access lock to the API

shared device interface data structure failed.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

Syntax

Description

Return Value

Program Interface Library AR_EXECUTE_BIT

RAR-USB User's Manual 59

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

CEI_INT16 testType (input) Type of test to execute, defined as

follows:

AR_BIT_BASIC_STARTUP (0) invokes a basic device

initialization to a reset state (all buffers flushed and channel

configurations reset).

AR_BIT_FULL_STARTUP (1) invokes device

initialization, a non-destructive SRAM memory test, and an

internal wrap test of all matched transmit/ receive channels,

(regardless of prior invocation of the API routine

AR_BYPASS_WRAP_TEST).

AR_BIT_PERIODIC (2) invokes a non-

destructive SRAM memory test and a timer-deviation test,

providing verification of the basic health status of the device.

AR_BIT_INT_LOOPBACK (3) invokes an internal wrap

test of all matched transmit/receive channels.

AR_BIT_EXT_LOOPBACK (4) invokes an external wrap

test of all matched transmit/receive channels.

AR_BIT_PARTIAL_SRAM (8)

AR_BIT_FULL_SRAM (9)

AR_BIT_SELECT_SRAM_MIN to

AR_BIT_SELECT_SRAM_MAX (100 to 1123)

 All of these options invoke a non-destructive pattern test of an

unused 8Kb block of SRAM.

Arguments

Program Interface Library AR_GET_573_FRAME

RAR-USB User's Manual 60

AR_GET_573_FRAME

CEI_INT16 ar_get_573_frame (CEI_INT16 board, pCEI_INT32

numberWords, pCEI_UINT16 arincData)

This function retrieves numberWords of ARINC 573/717 data from the

ARINC 573/717 receive channel. If any data is available, the actual

number of words received is indicated in the return value of numberWords.

If auto-synchronization is configured for the ARINC 573/717 channel, this

function will search the receive buffer for any occurrence of the first sub-

frame sync word (defined via invocation of AR_SET_573_CONFIG with

the item set to ARU_573_SYNC_WORD1) and return the specified

number of words of frame data following the instance of that sync word.

With automatic synchronization selected and the full frame size specified

in numberWords, this function will wait until the full frame is received and

copied to the destination array. The acquisition of an entire ARINC

573/717 frame may require up to four seconds to complete.

If the API Receive Storage Mode is set for Merged Mode buffering, all

ARINC 429 receivers should be disabled and only the ARINC 573/717

receiver enabled to receive and log bus traffic in the merged buffer. If

other receivers are active, messages received on those receivers will be

logged along with any active ARINC 573/717 data as they are received

and the content of the frame data will be corrupt.

ARS_NODATA No frame data was available.

ARS_GOTDATA At least one ARINC 573/717 data word has

been retrieved.

ARS_INVBOARD An invalid board value was provided.

ARS_INVHARVAL ARINC 573 support is not available on the

specified device.

ARS_INVARG An invalid numberWords or arincData

parameter was supplied.

ARS_FAILURE The specified device has not been initialized.

ARS_LOCK_ACCESS_FAILED Either the acquisition or

relinquish of the access lock to the API

shared device interface data structure failed.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

Syntax

Description

Return Value

Program Interface Library AR_GET_573_FRAME

RAR-USB User's Manual 61

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

pCEI_UINT32 numberWords (input/output) As an input this specifies

the number of words to retrieve from the

receive buffer. As an output this indicates

how many words were retrieved from the

receive buffer, less than or equal to the input

value of numberWords.

pCEI_UINT16 arincData (output) The address that is to receive the

frame data. The format of each data word in

the ARINC 573/717 frame is defined as

follows:

15 14 13 – 12 11 - 0

sync word RESERVED subframe data

sync word: indicates this word was detected as a sync word, where a value

of 1 indicates sync word and 0 indicates data word.

subframe: identifies the sub-frame assignment for this word, where 1

indicates sub-frame 1, 2 indicates sub-frame 2, 3 indicates sub-frame 3,

and 0 indicates sub-frame 4.

data: the 12-bit ARINC 573/717 data.

Arguments

Program Interface Library AR_GET_429_MESSAGE

RAR-USB User's Manual 62

AR_GET_429_MESSAGE

CEI_INT16 ar_get_429_message (CEI_INT16 board, CEI_INT16

channel, CEI_INT16 waitState, pCEI_VOID data, pCEI_VOID timetag)

This routine retrieves the most recent ARINC 429 data and 32-bit time-tag

from the specified channel. If no data is present in the receiver buffer, this

routine attempts to retrieve data for up to one-half second. If no data is

present after one-half second, a time-out status is returned. If no wait is

specified and no data is available, the return status is so indicated.

ARS_GOTDATA An ARINC 429 message and its time-tag

have been retrieved.

ARS_CHAN_TIMEOUT No data available (if waitState is AR_ON).

ARS_NODATA No data available (if waitState is AR_OFF).

ARS_BAD_MESSAGE An invalid length ARINC 429 message was

received.

ARS_INVBOARD An invalid board value was provided .

ARS_INVHARVAL Channel is not available on the device.

ARS_INVARG A NULL data parameter value was

provided.

ARS_FAILURE The specified device has not been initialized.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device this routine is to access.

Valid range is 0-127.

CEI_INT16 channel (input) Specifies which receive channel this

routine is to access. Valid range is 0 to one

less than the installed receive channel count.

CEI_INT16 waitState (input) Whether or not to wait for data. A

value of AR_ON specifies to wait ½ second

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GET_429_MESSAGE

RAR-USB User's Manual 63

for data; a value of AR_OFF specifies to

return if no data is immediately available.

pCEI_VOID data (output) The address that is to receive the

data. The returned ARINC 429 data is

always in normal ARINC format.

pCEI_VOID timetag (output) The address that is to receive the

32-bit time-tag associated with the data,

(resolution is programmable, default is one

millisecond). If the merged receive mode is

active, the upper five bits of the 32-bit time-

tag word will contain the receive channel

number on which the data was received. If

the timetag parameter is NULL, time-tag

information will not be provided.

Program Interface Library AR_GETBLOCK

RAR-USB User's Manual 64

AR_GETBLOCK

CEI_INT16 ar_getblock (CEI_UINT32 board, CEI_UINT32 channel,

CEI_INT32 maxMessages, CEI_INT32 offset, pCEI_INT32 actualCount,

pCEI_INT32 data, pCEI_INT32 timeTags);

This routine attempts to retrieve the requested number of ARINC

messages from the specified receive buffer. If the timeTags parameter is

not NULL, the 32-bit time-tag data associated with each retrieved message

is also copied. The actualCount, data, and timeTags parameters are only

valid when Return Value is ARS_GOTDATA or ARS_BAD_MESSAGE.

ARS_GOTDATA Message(s) and time-tag(s) were retrieved.

ARS_NODATA No data was available.

ARS_BAD_MESSAGE An invalid length ARINC 429 message was

received.

ARS_INVBOARD An invalid board value was provided .

ARS_INVHARVAL Channel is not available on device.

ARS_INVARG Invalid maxMessages, actualCount, or data

parameter was encountered.

ARS_FAILURE The specified device has not been initialized.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_UINT32 board (input) Device to access. Valid range is 0-

127.

CEI_UINT32 channel (input) Specifies which receive channel this

routine is to access. Valid range is 0 to one

less than the installed receive channel count.

CEI_INT32 maxMessages (input) The number of messages to retrieve.

CEI_INT32 offset unused parameter, retained for legacy API

support.

pCEI_INT32 actualCount (output) The number of messages retrieved.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GETBLOCK

RAR-USB User's Manual 65

pCEI_INT32 data (output) Array to store 32-bit ARINC data.

pCEI_INT32 timeTags (output) Array to store 32-bit time-tag data,

(resolution is programmable, default is one

millisecond). If the merged receive mode is

active, the upper five bits of the 32-bit time-

tag word will contain the receive channel

number on which the data was received. If

the timetag parameter is NULL, time-tag

information will not be provided.

Program Interface Library AR_GETBLOCK_T

RAR-USB User's Manual 66

AR_GETBLOCK_T

CEI_INT16 ar_getblock_t (CEI_UINT32 board, CEI_UINT32 channel,

CEI_INT32 maxMessages, pCEI_INT32 actualCount, pCEI_UINT32

msgChan, pCEI_INT32 data, pCEI_INT32 timeTagMsw, pCEI_INT32

timeTagLsw)

This routine retrieves the available ARINC 429 messages from the

requested receive channel buffer and copies them to the desired

destination. If the msgChan, timeTagMsw, and timeTagLsw parameters

are not NULL, the receive channel and 64-bit time-tag data associated with

each retrieved message are also copied. The actualCount, msgChan, data,

timeTagMsw and timeTagLsw parameters are only valid when Return

Value is ARS_GOTDATA or ARS_BAD_MESSAGE.

ARS_GOTDATA Message(s) and time-tag(s) were retrieved.

ARS_BAD_MESSAGE An invalid length ARINC 429 message was

received.

ARS_NODATA No data was available.

ARS_INVBOARD An invalid board value was provided .

ARS_INVHARVAL Channel is not available on device.

ARS_INVARG Invalid maxMessages, actualCount, or data

parameter was encountered.

ARS_FAILURE The specified device has not been initialized.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_UINT32 board (input) Device this routine is to access.

Valid range is 0-127.

CEI_UINT32 channel (input) Specifies which channel this routine

is to access. Valid range is 0 to one less than

the installed receive channel count.

CEI_INT32 maxMessages (input) The number of messages to retrieve.

pCEI_INT32 actualCount (output) The number of messages retrieved.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GETBLOCK_T

RAR-USB User's Manual 67

pCEI_UINT32 msgChan (output) Array to store the receiver channel

indication, necessary for actual receive

channel determination when using the

Merged Receive Mode.

pCEI_INT32 data (output) Array to store 32-bit ARINC 429

data.

pCEI_INT32 timeTagMsw (output) Array to store the most significant

32-bits of the 64-bit time-tag data.

pCEI_INT32 timeTagLsw (output) Array to store the least significant

32-bits of the 64-bit time-tag data.

Program Interface Library AR_GET_BOARDNAME

RAR-USB User's Manual 68

AR_GET_BOARDNAME

pCEI_CHAR ar_get_boardname (CEI_INT16 board, pCEI_CHAR

boardName)

This routine returns a character string describing the board name for the

RAR-USB device. It should only be invoked after successful invocation

of AR_LOADLSV.

NULL An uninitialized board or invalid board

value was provided.

For any valid detected board, the return value is a character string

description defined as “RAR-USB”

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

pCEI_CHAR boardName (output) If a valid board is detected and this

parameter is not NULL, the character

description of that board is copied to the

location referenced by this parameter. A

minimum of 7 bytes of allocation is required

for the destination array.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GET_BOARDTYPE

RAR-USB User's Manual 69

AR_GET_BOARDTYPE

CEI_INT16 ar_get_boardtype (CEI_INT16 board)

This routine returns the API/device type for the specified device. It should

only be invoked after successful invocation of AR_LOADLSV.

ARS_INVBOARD An invalid board value was provided .

ARS_FAILURE The specified device has not been initialized.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

For any value less than ARS_INVBOARD and not ARS_FAILURE, the

return value indicates the type of board associated with the supplied board

value:

 RAR-USB (33)

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GET_CONFIG

RAR-USB User's Manual 70

AR_GET_CONFIG

CEI_INT32 ar_get_config (CEI_INT16 board, CEI_INT16 item)

This routine returns the active state of API information, board level

settings, and limited ARINC 429 channel configuration register bit fields.

It is provided for backward compatibility to applications based on legacy

ARINC 429 API usage. The routine AR_GET_DEVICE_CONFIG is the

desired routine for acquiring information regarding channel and board-

level configuration.

See the ARU_* definitions in the file SAR_API.H for the most current list

of parameter options supported by this routine and the values associated

with those definitions.

If the requested item is ARU_RX_CHnn_BIT_RATE (500-515), where nn

is the receiver channel (01 - 32), this routine returns the current value of

the channel configuration register baud rate field:

AR_HIGH (0) high rate (100Kbs)

AR_LOW (1) low rate (12.5Kbs)

Any other value is returned as a frequency value in Hertz.

If the requested item is ARU_TX_CHnn_BIT_RATE (700-704), where nn

is the transmitter channel (01 - 05), this routine returns the current value of

the channel configuration register baud rate field:

AR_HIGH (0) high rate (100Kbs)

AR_LOW (1) low rate (12.5Kbs)

Any other value is returned as a frequency value in Hertz.

If the requested item is ARU_RX_CHnn_PARITY (900-915), where nn is

the receiver channel (01 - 32), this routine returns the current state of the

specified receiver channel configuration register parity field:

AR_ODD (0) receiver parity check enabled

AR_OFF (8) receiver parity check disabled

If the requested item is ARU_TX_CHnn_PARITY (1100-1104), where nn

is the transmitter channel (01 - 05), this routine returns the current state of

the specified transmitter channel configuration register parity field:

AR_ODD (0) odd transmitter parity

AR_EVEN (1) even transmitter parity

If the requested item is ARU_TX_CHnn_SHUT_OFF (1700-1704), where

nn is the transmitter channel (01 - 05), this routine returns the current state

of the specified transmitter channel configuration register transmit disable

field:

AR_ON (7) external transmission is disabled

AR_OFF (8) external transmission is enabled

Syntax

Description

Return Value

Program Interface Library AR_GET_CONFIG

RAR-USB User's Manual 71

If the requested item is ARU_TX_CHnn_HB_INJ (3300-3304), where nn

is the transmitter channel (01 - 05), this routine returns the current state of

the specified transmitter channel configuration register high-bit error

injection field:

AR_ON (7) 33-bit transmission is enabled

AR_OFF (8) standard 32-bit transmission is enabled

If the requested item is ARU_TX_CHnn_LB_INJ (3500-3504), where nn

is the transmitter channel (01 - 05), this routine returns the current state of

the specified transmitter channel configuration register low-bit error

injection field:

AR_ON (7) 31-bit transmission is enabled

AR_OFF (8) standard 32-bit transmission is enabled

If the requested item is ARU_TX_CHnn_GAP_INJ (3700-3704), where

nn is the transmitter channel (01 - 05), this routine returns the current state

of the specified transmitter channel configuration register message gap

error injection field:

AR_ON (7) 3-bit message gap is used

AR_OFF (8) standard 4-bit message gap is used

If the requested item is ARU_RX_TIMETAG_MODE (440), this routine

returns a value representing the currently selected timer/time-tag source

and resolution. This value indicates the resolution of any timer-read or

receive data time-tag value obtained via the API, and is defined as follows:

AR_TIMETAG_EXT_IRIG_64BIT (0)

AR_TIMETAG_INT_USEC_64BIT (1)

AR_TIMETAG_INT_20USEC_32BIT (3)

AR_TIMETAG_INT_MSEC_32BIT (4)

AR_TIMER_X20_COMPAT_32BIT (5)

A value of AR_TIMETAG_EXT_IRIG_64BIT indicates the source

is the external IRIG receiver, if connected; otherwise, if the IRIG

signal is not internally wrapped this selection would be invalid.

All other values represent various timer/time-tag LSB resolution

values based on the internal RAR-USB device timer.

If the requested item is ARU_ACCESS_SNAPSHOT_BUFFER (38), this

routine returns the currently selected Snapshot Buffer storage mode:

ARU_LABEL_ONLY (0) messages stored based on label

ARU_LABEL_WITH_SDI (1) messages stored based on the

combined label and SDI field values

If the requested item is ARU_IRIG_WRAP_ENABLE (441), this routine

returns the current state of the IRIG Receiver internal wrap feature:

AR_ON (7) IRIG Receiver is patched into the IRIG Generator

AR_OFF (8) IRIG Receiver is configured for external IRIG source

Program Interface Library AR_GET_CONFIG

RAR-USB User's Manual 72

If the requested item is ARU_IRIG_AVAILALBE (445), this routine

returns TRUE if IRIG-B support is available, FALSE if it is not.

If the requested item is ARU_IRIG_CALIBRATED (447), this routine

verifies the ability to capture consecutive IRIG time samples at a one

second interval. If this results in a return status of FALSE (0), the IRIG

signal is not consistent; otherwise, a return value of TRUE (1) indicates the

signal is valid, or an error status (any value greater than 1) indicates a

failure occurred.

If the requested item is not on this list or in the list of valid items for

AR_GET_DEVICE_CONFIG, this routine will return a value of

ARS_INVARG.

If the requested item is not valid for the specified device, this routine

returns a value of ARS_INVHARCMD.

If the specified board is invalid or has not been initialized, this routine

returns ARS_INVBOARD.

If access to the Board Lock timed-out or failed, this routine returns

ARS_BOARD_MUTEX.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

CEI_INT16 item (input) Control function about which to

return information:

ARU_RX_CH01_BIT_RATE –

ARU_RX_CH16_BIT_RATE receiver 1 – 16 bit rate selection.

ARU_TX_CH01_BIT_RATE –

ARU_TX_CH05_BIT_RATE transmitter 1 – 5 bit rate selection.

ARU_RX_CH01_PARITY –

ARU_RX_CH16_PARITY receiver 1 – 16 parity state.

ARU_TX_CH01_PARITY –

ARU_TX_CH05_PARITY transmitter 1 – 5 parity state.

ARU_TX_CH01_SHUT_OFF –

ARU_TX_CH05_SHUT_OFF transmitter 1 – 5 enable state.

ARU_TX_CH01_LB_INJ – transmitter 1 – 5 low bit error

ARU_TX_CH05_LB_INJ enable state.

ARU_TX_CH01_HB_INJ – transmitter 1 – 5 high bit error

ARU_TX_CH05_HB_INJ enable state.

ARU_TX_CH01_GAP_INJ – transmitter 1 – 5 message

Arguments

Program Interface Library AR_GET_CONFIG

RAR-USB User's Manual 73

ARU_TX_CH05_GAP_INJ gap error enable state.

ARU_IRIG_AVAILABLE IRIG Receiver installed state.

ARU_IRIG_WRAP_ENABLE IRIG Receiver internal wrap state.

ARU_IRIG_CALIBRATED IRIG signal validity.

ARU_ACCESS_SNAPSHOT_BUFFER snapshot storage mode.

ARU_FW_VERSION Hardware Version reg. value.

ARU_CONFIGURATION configuration of the device.

ARU_RX_TIMETAG_MODE active timer/time-tagging mode.

Program Interface Library AR_GET_DATA

RAR-USB User's Manual 74

AR_GET_DATA

CEI_INT16 ar_get_data (CEI_INT16 board, pCEI_INT16 channel,

pCEI_UINT32 data, pCEI_UINT32 timeTagLo, pCEI_UINT32

timeTagHi)

This routine retrieves the next unread message and 64-bit time-tag from

the specified receive channel. If it successfully returns data, there may or

may not be more data in the buffer. It means only that there was at least

one message in the buffer. Subsequent calls are required to determine if

more data words are available in the buffer. If this routine returns a status

value of ARS_NODATA, the buffer is empty. If neither of the timeTagLo

or timeTagHi parameters are NULL, the 64-bit time-tag data associated

with the retrieved message is also retrieved.

If the AR-STREAM API receive message storage mode is set for merged

mode operation, this routine returns the next unread message from the

merged receive buffer and indicates on which channel the message was

received via the channel parameter.

ARS_GOTDATA A message and time-tag have been received.

ARS_NODATA No data available.

ARS_BAD_MESSAGE An invalid length ARINC 429 message was

received.

ARS_INVBOARD An invalid board value was provided.

ARS_INVHARVAL Channel is not available on device.

ARS_INVARG Invalid data parameter was encountered.

ARS_FAILURE The specified device has not been initialized.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

Syntax

Description

Return Value

Program Interface Library AR_GET_DATA

RAR-USB User's Manual 75

CEI_INT16 board (input) Device this routine is to access.

Valid range is 0-127.

pCEI_INT16 channel (input/output) As an input, specifies which

hardware receive channel this routine is to

access, (see the description of the Receive

Channel Select Register – 0x0040 for the

list of valid hardware receive channel

values) . As an output, indicates the receive

channel number on which the data was

received (for merged-mode channel

reporting).

pCEI_UINT32 data (output) Address that is to receive the data.

pCEI_UINT32 timeTagLo (output) Address that is to receive the least-

significant 32 bits of the 64-bit time-tag

associated with the data, (resolution of the

combined time-tag words is 1 sec).

pCEI_UINT32 timeTagHi (output) Address that is to receive the most-

significant 32 bits of the 64-bit time-tag

associated with the data, (resolution of the

combined time-tag words is 1 sec).

Arguments

Program Interface Library AR_GET_DATA_XT

RAR-USB User's Manual 76

AR_GET_DATA_XT

CEI_INT16 ar_get_data (CEI_INT16 board, pCEI_INT16 channel,

pCEI_INT32 data, pAR_TIMETAG_TYPE timeTagRef)

This routine retrieves the next unread message and the associated time-tag

from the specified receive channel. If it successfully returns data, there

may or may not be more data in the buffer. It means only that there was at

least one message in the buffer. Subsequent calls are required to determine

if more data words are available in the buffer. If this routine returns a

status value of ARS_NODATA, the buffer is empty. The time-tag

structure is required to be defined by the host application with this routine.

If the AR-STREAM API receive message storage mode is set for merged

mode operation, this routine returns the next unread message from the

merged receive buffer and indicates on which channel the message was

received via the channel parameter.

ARS_GOTDATA A message and time-tag have been received.

ARS_NODATA No data available.

ARS_BAD_MESSAGE An invalid length ARINC 429 message was

received.

ARS_INVBOARD An invalid board value was provided .

ARS_INVHARVAL Channel is not available on device.

ARS_INVARG Invalid data or timeTagRef parameter was

encountered.

ARS_FAILURE The specified device has not been initialized.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

Syntax

Description

Return Value

Program Interface Library AR_GET_DATA_XT

RAR-USB User's Manual 77

CEI_INT16 board (input) Device this routine is to access.

Valid range is 0-127.

pCEI_INT16 channel (input/output) As an input, specifies which

hardware receive channel this routine is to

access. As an output, indicates the receive

channel number on which the data was

received (for merged-mode channel

reporting).

pCEI_INT32 data (output) Address that is to receive the data.

pAR_TIMETAG_TYPE timeTagRef (output)

 The address that is to receive the time-tag

data structure associated with the data.

Arguments

Program Interface Library AR_GET_DEVICE_CONFIG

RAR-USB User's Manual 78

AR_GET_DEVICE_CONFIG

CEI_INT16 ar_get_device_config (CEI_INT16 board, CEI_INT16

channel, CEI_INT16 item, pCEI_INT16 value)

This routine returns the state of the device configuration register attribute

based on the combined item/value parameters. It is designed to support all

ARINC 429 channel configuration register bit fields available to the

device.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An invalid board value was provided.

ARS_INVARG The item argument value is not supported by

this API routine.

ARS_INVHARVAL The channel argument value is not

supported by this device configuration.

ARS_FAILURE The specified device has not been initialized.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

CEI_INT16 channel (input) Specifies which channel this routine

is to access. Valid range is 0 to one less than

the installed channel count for the specified

channel type. For board-level configuration

items, this parameter is not used.

CEI_INT16 item (input) configuration register or board level

attribute for which to return the current state:

ARU_RX_PARITY receive channel parity enable.

ARU_RX_BITRATE receive channel bit rate.

ARU_RX_FIFO_ENABLE receive channel enable.

ARU_RECV_MODE receiver internal wrap.

ARU_TX_BITRATE transmit channel bit rate.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GET_DEVICE_CONFIG

RAR-USB User's Manual 79

ARU_TX_PARITY transmit channel parity select.

ARU_TX_FIFO_ENABLE transmit channel enable.

ARU_TX_DISABLE transmit channel transceiver disable.

ARU_TX_BIT_ERROR transmit channel bit error enable.

ARU_TX_GAP_ERROR transmit channel gap error enable.

ARU_FAST_SLEW_RATE transmit channel slew rate select.

ARU_ACCESS_SNAPSHOT_BUFFER snapshot storage mode.

ARU_IRIG_WRAP_ENABLE IRIG receiver internal wrap state.

ARU_IRIG_AVAILALBE IRIG receiver installed state.

ARU_IRIG_INPUT_TIME IRIG received sample value.

ARU_IRIG_CALIBRATED IRIG signal validity.

ARU_DEVICE_DISABLE Device disabled state.

ARU_DISCRETE_IN discrete input state.

ARU_RX_TIMETAG_MODE active timer/time-tagging mode.

ARU_CHAN_COUNT_429 ARINC 429 Tx channel count.

ARU_CHAN_COUNT_573 ARINC 573/717 channel count.

ARU_CHAN_COUNT_DISC discrete I/O channel count.

ARU_RX_FIFO_COUNT receive FIFO buffer fill count.

ARU_TX_FIFO_COUNT transmit FIFO buffer fill count.

ARU_RX_MSG_COUNT receive message count.

ARU_TX_MSG_COUNT transmit message count.

ARU_FW_VERSION current programmed firmware vers.

ARU_CONFIGURATION board configuration type.

pCEI_INT16 value (output) state of the configuration register

attribute:

If the requested item is ARU_RX_FIFO_ENABLE (16) or

ARU_TX_FIFO_ENABLE (17), this routine will return the current value

of the specified channel configuration register FIFO Enable field:

AR_ON (7) FIFO operation enabled

AR_OFF (8) FIFO operation disabled

If the requested item is ARU_RX_BITRATE (1) or ARU_TX_BITRATE

(2), this routine will return the current value of the specified channel

configuration register baud rate field:

ARU_SPEED_HIGH (0) high rate (100Kbs)

ARU_SPEED_LOW (1) low rate (12.5Kbs)

If the respective channel is programmed to any other bus speed

value, the returned value is represented as a non-standard bus speed

clock divisor value for the 16MHz device clock reference. This

value and the respective baud rate may be interpreted using the

following formula:

 Baud Rate = 16,000,000 / (Divisor Value+2)

Program Interface Library AR_GET_DEVICE_CONFIG

RAR-USB User's Manual 80

If the requested item is ARU_RX_PARITY (3), this routine returns the

current state of the specified receive channel configuration register parity

field:

AR_ ON (7) receiver parity check enabled

AR_OFF (8) receiver parity check disabled

If the requested item is ARU_TX_PARITY (4), this routine returns the

current state of the specified transmitter channel configuration register

parity field:

ARU_PARITY_ODD (0) odd transmitter parity

ARU_PARITY_EVEN (1) even transmitter parity

ARU_PARITY_NONE (2) transmitter parity disabled

If the requested item is ARU_RECV_MODE (5), this routine returns the

current state of the specified receive channel configuration register Internal

Wrap Enable field:

AR_WRAP_ON (0) internal wrap reception enabled

AR_WRAP_OFF (1) internal wrap reception disabled

If the requested item is ARU_RX_MERGED_MODE (18), this routine

returns the current state of the specified receive channel configuration

register Merge Mode enable field:

AR_ON (7) Merged Mode enabled

AR_OFF (8) Merged Mode disabled

If the requested item is ARU_TX_DISABLE (10), this routine returns the

current state of the specified transmit channel configuration register

Transmit Disable field:

AR_ON (7) external transmission disabled

AR_OFF (8) external transmission enabled

If the requested item is ARU_TX_BIT_ERROR (6), this routine returns

the current state of the specified transmitter channel configuration register

Bit Count Hi and Low fields:

AR_LO (0) Bit Count Low enabled

AR_HI (1) Bit Count High enabled

AR_OFF (8) both Bit Count Low and High disabled

If the requested item is ARU_TX_GAP_ERROR (8), this routine returns

the current state of the specified transmitter channel configuration register

Gap Error field:

AR_ON (7) Gap Error enabled

AR_OFF (8) Gap Error disabled

If the requested item is ARU_FAST_SLEW_RATE (323), this routine

returns the current state of the specified transmitter channel configuration

register Slew Rate field:

AR_ON (7) Fast Slew Rate selected (1.5 µsec rise time)

AR_OFF (8) Slow Slew Rate selected (10 µsec rise time)

Program Interface Library AR_GET_DEVICE_CONFIG

RAR-USB User's Manual 81

If the requested item is ARU_ACCESS_SNAPSHOT_BUFFER (38), this

routine returns the current state of the API snapshot storage mode:

ARU_LABEL_ONLY (0) message storage on a label basis

ARU_LABEL_WITH_SDI (1) message storage on a combined

 label/SDI basis.

If the requested item is ARU_IRIG_AVAILALBE (445), this routine

returns TRUE if IRIG-B support is available, FALSE if it is not.

If the requested item is ARU_IRIG_INPUT_TIME (27), this routine

returns the most recent received IRIG received sample value.

If the requested item is ARU_IRIG_WRAP_ENABLE (441), this routine

returns the current state of the IRIG Receiver internal wrap feature:

AR_ON (7) IRIG Receiver is patched into the IRIG Generator

AR_OFF (8) IRIG Receiver is configured for external IRIG source

If the requested item is ARU_IRIG_CALIBRATED (447), this routine

verifies the ability to capture consecutive IRIG time samples at a one

second interval. If this results in a return status of FALSE (0), the IRIG

signal is not consistent; otherwise, a return value of TRUE (1) indicates the

signal is valid, or an error status (any value greater than 1) indicates a

failure occurred.

If the requested item is ARU_DISCRETE_IN (14), this routine returns the

current state of the specified discrete I/O channel:

AR_HI (1) the discrete is High

AR_LO (0) the discrete is Low

If the requested item is ARU_RX_TIMETAG_MODE (440), this routine

returns a value representing the currently selected timer/time-tag source

and resolution. This value indicates the resolution of any timer-read or

receive data time-tag value obtained via the API, and is defined as follows:

AR_TIMETAG_EXT_IRIG_64BIT (0)

AR_TIMETAG_INT_USEC_64BIT (1)

AR_TIMETAG_INT_20USEC_32BIT (3)

AR_TIMETAG_INT_MSEC_32BIT (4)

AR_TIMER_X20_COMPAT_32BIT (5)

A value of AR_TIMETAG_EXT_IRIG_64BIT indicates the source

is the external IRIG receiver, if connected; otherwise, if the IRIG

signal is not internally wrapped this selection would be invalid.

All other values represent various timer/time-tag LSB resolution

values based on the internal RAR-USB device timer.

If the requested item is ARU_DEVICE_DISABLE (39), this routine

returns the current value of the Global Status Register – Device Disabled

bit.

Program Interface Library AR_GET_DEVICE_CONFIG

RAR-USB User's Manual 82

If the requested item is ARU_CHAN_COUNT_429 (448), this routine

returns the ARINC 429 transmit channel count detected on the board.

If the requested item is ARU_CHAN_COUNT_573 (449), this routine

returns the ARINC 573/717 transmit channel count detected on the board.

If the requested item is ARU_CHAN_COUNT_ DISC (450), this routine

returns the discrete output channel count detected on the board.

If the requested item is ARU_TX_FIFO_COUNT (19), this routine returns

the current buffer count of messages in the specified ARINC 429 transmit

FIFO awaiting transmission.

If the requested item is ARU_RX_FIFO_COUNT (28), this routine returns

the current buffer count of messages in the ARINC 429 receive FIFO

available to be read by the host application.

If the requested item is ARU_RX_MSG_COUNT (35), this routine returns

the number of messages received on this channel since the board was last

initialized.

If the requested item is ARU_TX_MSG_COUNT (36), this routine returns

the number of messages transmitted on this channel since the board was

last initialized.

If the requested item is ARU_FW_VERSION (20), this routine returns the

current programmed firmware.

If the requested item is ARU_CONFIGURATION (21), this routine

returns the Board Configuration value in the least significant 8 bits,

defined as follows:

RAR-USB-1605-W 0

RAR-USB-0805-W 1

RAR-USB-0404-W 2

RAR-USB-0202-W 3

RAR-USB-0402-W 4

RAR-USB-1601-W 5

RAR-USB-0505-W 6

RAR-USB-1504J-W 7

RAR-USB-0804J-W 8

RAR-USB-0404J-W 9

RAR-USB-0202J-W 10

In addition to the value returned above, bit 8 will be set for any ARINC

717 configuration for compatibility with legacy ARINC API usage.

Program Interface Library AR_GET_DEVICE_CONFIG

RAR-USB User's Manual 83

If the requested item is ARU_TX_PLAYBACK_ENABLE (5018), this

routine returns the current state of the Transmit Playback feature:

AR_ON (7) Transmit Playback is Enabled

AR_OFF (8) Transmit Playback is Disabled

If the requested item is ARU_TX_PLAYBACK_COUNT (5021), this

routine returns the current number of Transmit Playback message entries

processed since the last Transmit Playback transition from disabled to the

enabled state.

If the requested item is ARU_TX_PLAYBACK_INVALID_COUNT

(5022), this routine returns the current number of Transmit Playback

message entries processed containing an invalid transmit channel

reference, since the last Transmit Playback transition from disabled to the

enabled state..

If the requested item is ARU_TX_PLAYBACK_ACTIVE_STATUS

(5023), this routine returns an indication of the state of Transmit Playback

on the device, defined as follows:

TRUE (1) Transmit Playback is actively processing entries

FALSE (0) Transmit Playback is not actively processing entries

Program Interface Library AR_GET_573_CONFIG

RAR-USB User's Manual 84

AR_GET_573_CONFIG

CEI_INT16 ar_get_573_config (CEI_INT16 board, CEI_INT16 item,

pCEI_INT32 value)

This routine returns the state of the device configuration register attribute

based on the combined item/value. It is designed to support the ARINC

573/717 configuration register attributes available to the device.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An invalid board value was provided.

ARS_INVARG The item argument value is not supported by

this API routine.

ARS_FAILURE The specified device has not been initialized.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device this routine is to access.

Valid range is 0-127.

CEI_INT16 item (input) Configuration item about which to

return information:

ARU_RECV_MODE receiver internal wrap.

ARU_RX_BITRATE receive channel bit rate.

ARU_RX_FIFO_ENABLE receive channel buffer enable.

ARU_RX_MERGED_MODE receiver merged mode enable

ARU_573_RX_AUTO_DETECT receiver frame auto-detect enable.

ARU_573_RX_BPRZ_SELECT receiver BPRZ/HBP selection.

ARU_TX_BITRATE transmit channel bit rate.

ARU_TX_FIFO_ENABLE transmit channel buffer enable.

ARU_TX_DISABLE transmit channel external disable.

ARU_573_TX_BPRZ_SELECT transmitter BPRZ encoder enable.

ARU_573_TX_HBP_SELECT transmitter HBP encoder enable.

ARU_573_TX_SLEW_RATE transmitter slew rate select.

ARU_TX_FIFO_COUNT transmit FIFO buffer fill count.

ARU_573_SYNC_WORD1 receiver auto-detect sync word 1.

ARU_573_SYNC_WORD2 receiver auto-detect sync word 2.

ARU_573_SYNC_WORD3 receiver auto-detect sync word 3.

ARU_573_SYNC_WORD4 receiver auto-detect sync word 4.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GET_573_CONFIG

RAR-USB User's Manual 85

pCEI_INT32 value (output) The address that receives the state

of the item requested:

If the requested item is ARU_RECV_MODE (5), this routine returns the

current state of the ARINC 573/717 receive channel Internal Wrap Enable:

AR_WRAP_ON (0) internal wrap reception enabled

AR_WRAP_OFF (1) internal wrap reception disabled

If the requested item is ARU_RX_FIFO_ENABLE (16) or

ARU_TX_FIFO_ENABLE (17), then this routine will return the current

value of the ARINC 573/717 channel FIFO Enable:

AR_ON (7) FIFO operation enabled

AR_OFF (8) FIFO operation disabled

If the requested item is ARU_TX_DISABLE (10), this routine returns the

current state of the ARINC 717 transmit channel configuration register

Transmit Disable field:

AR_ON (7) external transmission disabled

AR_OFF (8) external transmission enabled

If the requested item is ARU_RX_MERGED_MODE (18), this routine

returns the current state of the ARINC 573/717 receive channel Merge

Mode Enable:

AR_ON (7) Merge mode enabled

AR_OFF (8) Merge mode disabled

If the requested item is ARU_573_RX_AUTO_DETECT (301), this

routine returns the current state of the ARINC 573/717 receive channel

Auto-synchronization Enable:

AR_ON (7) ARINC 573/717 frame auto-detection enabled

AR_OFF (8) ARINC 573/717 frame auto-detection disabled

If the requested item is ARU_573_RX_BPRZ_SELECT (302), this routine

returns the current state of the ARINC 573/717 receive channel Encoding

Enable:

AR_ON (7) ARINC 573/717 BPRZ encoding enabled

AR_OFF (8) ARINC 573/717 HBP encoding enabled

If the requested item is ARU_RX_BITRATE (1) or ARU_TX_BITRATE

(2), this routine returns the current state of the ARINC 573/717 channel

Baud Rate/Subframe Size selection (ranging from 0 to 7):

ARU_573_RATE_SIZE_384_32 384 bps, 32 word sub-frame

ARU_573_RATE_SIZE_768_64 768 bps, 64 word sub-frame

ARU_573_RATE_SIZE_1536_128 1536 bps, 128 word sub-frame

ARU_573_RATE_SIZE_3072_256 3072 bps, 256 word sub-frame

ARU_573_RATE_SIZE_6144_512 6144 bps, 512 word sub-frame

Program Interface Library AR_GET_573_CONFIG

RAR-USB User's Manual 86

ARU_573_RATE_SIZE_12288_1024 12288 bps, 1024 word sub-frame

ARU_573_RATE_SIZE_24576_2048 24576 bps, 2048 word sub-frame

ARU_573_RATE_SIZE_49152_4096 49152 bps, 4096 word sub-frame

If the requested item is ARU_573_TX_BPRZ_SELECT (313), this routine

returns the current state of the ARINC 573/717 transmit channel Encoding

Enable:

AR_ON (7) ARINC 573/717 BPRZ encoding enabled

AR_OFF (8) ARINC 573/717 BPRZ encoding disabled

If the requested item is ARU_573_TX_HBP_SELECT (314), this routine

returns the current state of the ARINC 573/717 transmit channel Encoding

Enable:

AR_ON (7) ARINC 573/717 HBP encoding enabled

AR_OFF (8) ARINC 573/717 HBP encoding disabled

If the requested item is ARU_573_TX_SLEW_RATE (305) this routine

returns the current state of the ARINC 573/717 transmit channel Slew Rate

selection:

ARU_573_TX_SLEW_1PT5 (1) 1.5µsec rise time

ARU_573_TX_SLEW_10PT0 (0) 10.0µsec rise time

If the requested item is ARU_TX_FIFO_COUNT (19), this routine returns

the current buffer count of messages in the ARINC 717 transmit FIFO

awaiting transmission.

If the requested item is ARU_573_SYNC_WORD1 (307),

ARU_573_SYNC_WORD2 (308), ARU_573_SYNC_WORD3 (309), or

ARU_573_SYNC_WORD4 (310), this routine returns the 12-bit value for

the respective receiver sub-frame sync word.

Program Interface Library AR_GET_ERROR

RAR-USB User's Manual 87

AR_GET_ERROR

pCEI_CHAR ar_get_error (CEI_INT16 status)

Most of the API routines return status values, a majority of which indicate

an error condition. When supplied with such an error value, this routine

returns a pointer to a message string describing the error.

Review the section, “Return Status Values”, for the current list of possible

error codes and their explanations.

A pointer to the error message character string. An allocation of at least 40

characters should be provided when copying the character string.

CEI_INT16 status (input) a status value returned by any of the

API utilities.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GETFILTER

RAR-USB User's Manual 88

AR_GETFILTER

CEI_INT32 ar_getfilter (CEI_UINT32 board, CEI_UINT32 channel,

pCEI_CHAR filterTable)

This routine returns the contents of a single channel label filter table from

the device. Each receive channel has a separate section within the label

filter table, used by the firmware to control storage of received labels in the

device Merged Receive Buffer. Each element of the filter table consists of

a bit field defined for compatibility with the CEI-x20 product line as

follows:

FILTER_SEQUENTIAL 0x10 If CLEAR add label to Sequential receive buffer

The filter buffer for a single channel is defined as follows:

 filterTable[MAX_ESSM][MAX_SDI][MAX_LABEL]

and accessed as:

filterTable[eSSM][SDI][label]

where the bits of the ARINC word are split up as follows:

eSSM SDI label

30, 29, 28 9, 8 7, 6, 5, 4, 3, 2, 1, 0

To modify entries in the label filter table, refer to the API routines

AR_ENH_LABEL_FILTER, AR_PUTFILTER, and

AR_LABEL_FILTER.

ARS_NORMAL Routine execution was successful.

ARS_INVARG Invalid channel or filterTable parameter.

ARS_INVBOARD An invalid board value was provided.

ARS_FAILURE The specified device has not been initialized.

ARS_LOCK_ACCESS_TIMEOUT The shared data structure access

lock was not acquired.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

Syntax

Description

Return Value

Program Interface Library AR_GETFILTER

RAR-USB User's Manual 89

CEI_UINT32 board (input) Device to access. Valid range is 0-

127.

CEI_UINT32 channel (input) Specifies which receive channel this

routine is to access. Valid range is 0 to one

less than the installed receive channel count.

pCEI_CHAR filterTable (input) Array to receive the contents of the

specified channel’s label filter table. This

array must have a minimum allocation of

8Kbytes.

Arguments

Program Interface Library AR_GET_IRIG_TIME_SET

RAR-USB User's Manual 90

AR_GET_IRIG_TIME_SET

CEI_INT16 ar_get_irig_time_set (CEI_INT16 board,

PTR_TIME_TAG_TYPE irigSampleTime, PTR_TIME_TAG_TYPE

irigTimeStamp, PTR_TIME_TAG_TYPE boardTime)

When measuring the signal presence and accuracy of the IRIG sample,

comparing the board time and IRIG sample time provides a convenient

method to validate IRIG signal integrity.

This routine returns the current IRIG Sample Time 64-bit one microsecond

correlated value, the associated IRIG sample 64-bit time-stamp, and the

current value of the device's internal 64-bit timer, all captured from the

same host interface snapshot uploaded from the device.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An invalid board value was provided.

ARS_FAILURE The specified device has not been initialized.

ARS_LOCK_ACCESS_TIMEOUT The shared data structure access

lock was not acquired.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

PTR_TIME_TAG_TYPE irigSampleTime (output) 64-bit IRIG

Sample Time-of-Year as a 64-bit, one-

microsecond correlated value.

PTR_TIME_TAG_TYPE irigTimeStamp (output) IRIG sample

received time-stamp, 64-bit, one-

microsecond resolution.

PTR_TIME_TAG_TYPE boardTime (output) Current board timer

value, 64-bit, one-microsecond resolution.

 Syntax

Description

Return Value

Arguments

Program Interface Library AR_GET_LABEL_FILTER

RAR-USB User's Manual 91

AR_GET_LABEL_FILTER

CEI_INT16 ar_get_label_filter (CEI_INT16 board, CEI_UINT16 label)

This routine returns the active state of label filtering for the specified label

value on all channels, with a bitwise indication for each of the installed

receive channels.

Given the routine is supplied with a valid board and label value, the return

value indicates the active state of label filtering for the specified label on

each receive channel. The indication is provided via bitwise state, where

the label filter state on receive channel zero (zero-referenced) is indicated

via b0 as “1” to indicate the label is filtered and “0” to indicate either the

label is not filtered or the receive channel is not installed. Subsequent bits

in the value indicate the label filter state for the respective receive channel.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

CEI_UINT16 label (input) Specifies which label to query. Valid

range is 0 to 255.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GET_LATEST

RAR-USB User's Manual 92

AR_GET_LATEST

CEI_VOID ar_get_latest (CEI_INT16 board, CEI_INT16 channel,

CEI_UINT16 label, pCEI_VOID data, pCEI_CHAR seq_num)

In support of backward compatibility to previous ARINC product APIs,

this routine returns the latest ARINC 429 message received for the

specified channel/label combination from the AR-STREAM API’s

simulated snapshot buffer. Invocation of this routine is only valid when

the API Receive Message Buffering Mode is buffered/individual, and will

return an error if the Buffering Mode is merged.

If the label parameter value requested is either 256 or the value

ARU_ALL_LABELS (511), this routine treats the data parameter as an

array reference and returns the most recent received ARINC message for

all 256 valid ARINC labels for the specified channel, in successive data

array elements. This function assumes that the caller has allocated at least

1024 bytes for data when used in this mode.

If no message has been received for the specified channel/label since the

last initialization of the device, a data value of zero will be returned.

CEI_INT16 board (input) Device this routine is to access.

Valid range is 0-127.

CEI_INT16 channel (input) Specifies which receive channel this

routine is to access. Valid range is 0 to one

less than the installed receive channel count.

CEI_UINT16 label (input) The label value of interest.

pCEI_VOID data (output) Location to store the 32-bit ARINC

429 message.

pCEI_CHAR seq_num (output) Unsupported legacy parameter.

Syntax

Description

Arguments

Program Interface Library AR_GET_LATEST_T

RAR-USB User's Manual 93

AR_GET_LATEST_T

CEI_INT32 ar_get_latest_t (CEI_INT16 board, CEI_INT16 channel,

CEI_UINT16 label, pCEI_UINT32 data, TIME_TAG_TYPE * timeTag)

This routine returns the latest ARINC 429 message and time-stamp

received for the specified channel/label combination from the AR-

STREAM API’s simulated snapshot buffer. Invocation of this routine is

only valid when the API Receive Message Buffering Mode is

buffered/individual, and will return an error if the Buffering Mode is

merged.

If no message has been received for the specified channel/label since the

last initialization of the device, a data value of zero is returned for the

message and time-stamp. If the timeTag parameter is NULL, no time-

stamp information is returned.

ARS_NORMAL Routine execution was successful.

ARS_INVARG Invalid label or null data parameter.

ARS_INVHARVAL Channel is not available on device.

ARS_INVBOARD An invalid board value was provided.

ARS_FAILURE The specified device has not been initialized.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device this routine is to access.

Valid range is 0-127.

CEI_INT16 channel (input) Specifies which receive channel this

routine is to access. Valid range is 0 to one

less than the installed receive channel count.

CEI_UINT16 label (input) The label value of interest.

pCEI_UINT32 data (output) Location to store the ARINC 429

message.

TIME_TAG_TYPE * timeTag (output) The address that is to receive the

64-bit message time-stamp, the format of

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GET_LATEST_T

RAR-USB User's Manual 94

which is determined by the current API

time-tag format.

Program Interface Library AR_GETNEXT

RAR-USB User's Manual 95

AR_GETNEXT

CEI_INT16 ar_getnext (CEI_INT16 board, CEI_INT16 channel,

pCEI_VOID destination)

This routine retrieves the next unread message from the specified receive

channel. If no message is present in the receiver FIFO buffer upon

invocation, this routine polls the buffer waiting for the presence of a

received message for up to one-half second. If no message is present after

one-half second, a time-out status is returned.

ARS_GOTDATA A message has been retrieved.

ARS_CHAN_TIMEOUT No message was available or received.

ARS_BAD_MESSAGE An invalid length ARINC 429 message was

received on the specified channel.

ARS_INVARG Invalid destination parameter.

ARS_INVHARVAL Channel is not available on device.

ARS_INVBOARD An invalid board value was provided.

ARS_FAILURE The specified device has not been initialized.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device this routine is to access.

Valid range is 0-127.

CEI_INT16 channel (input) Specifies which channel this routine

is to access. Valid range is 0 to one less than

the installed receive channel count.

pCEI_VOID destination (output) The address that is to receive the

message.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GETNEXTT

RAR-USB User's Manual 96

AR_GETNEXTT

CEI_INT16 ar_getnextt (CEI_INT16 board, CEI_INT16 channel,

pCEI_VOID destination, pCEI_VOID timetag)

This routine retrieves the next unread message and scaled 32-bit time-

stamp from the specified receive channel. If no message is present in the

receiver FIFO buffer when invoked this routine polls the buffer waiting for

the presence of a received message for up to one-half second. If no

message is present after one-half second, a time-out status is returned.

If the timetag parameter is not NULL, the 32-bit translation of the 64-bit

message time-stamp will be returned, scaled to the active legacy 32-bit

time-tag mode, (1 millisecond resolution by default).

ARS_GOTDATA A message has been retrieved.

ARS_CHAN_TIMEOUT No message was available or received.

ARS_BAD_MESSAGE An invalid length ARINC 429 message was

received.

ARS_INVARG Invalid destination parameter.

ARS_INVHARVAL Channel is not available on device.

ARS_INVBOARD An invalid board value was provided.

ARS_FAILURE The specified device has not been initialized.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device this routine is to access.

Valid range is 0-127.

CEI_INT16 channel (input) Specifies which channel this routine

is to access. Valid range is 0 to one less than

the installed receive channel count.

pCEI_VOID destination (output) The address that is to receive the

message.

pCEI_VOID timetag (output) The address that is to receive the

32-bit time-tag associated with the data,

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GETNEXTT

RAR-USB User's Manual 97

(resolution is programmable). If the merged

receive mode is active for the specified

channel, the upper five bits of the 32-bit

time-tag word contain the receive channel

number on which the data was received.

Program Interface Library AR_GETNEXT_XT

RAR-USB User's Manual 98

AR_GETNEXT_XT

CEI_INT16 ar_getnext_xt (CEI_INT16 board, CEI_INT16 channel,

pCEI_UINT32 data, pAR_TIMETAG_TYPE timeTagRef)

This routine retrieves the next unread message and the associated time-tag

structure from the specified receive channel. If no message is present in

the receiver FIFO buffer when invoked, this routine polls the buffer

waiting for the presence of a received message for up to one-half second.

If no message is present after one-half second, a time-out status is returned.

The time-tag structure is required to be defined by the host application

with this routine.

ARS_GOTDATA A message has been retrieved.

ARS_CHAN_TIMEOUT No message was available or received.

ARS_BAD_MESSAGE An invalid length ARINC 429 message was

received.

ARS_INVARG Invalid data parameter.

ARS_INVHARVAL Channel is not available on device.

ARS_INVBOARD An invalid board value was provided.

ARS_FAILURE The specified device has not been initialized.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device this routine is to access.

Valid range is 0-127.

CEI_INT16 channel (input) Specifies which channel this routine

is to access. Valid range is 0 to one less than

the installed receive channel count.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GETNEXT_XT

RAR-USB User's Manual 99

pCEI_UINT32 data (output) The address that is to receive the

message.

pAR_TIMETAG_TYPE timeTagRef (output)

 The address that is to receive the time-tag

data structure associated with the message.

Program Interface Library AR_GET_RX_CHANNEL_STATUS

RAR-USB User's Manual 100

AR_GET_RX_CHANNEL_STATUS

CEI_UINT32 ar_get_rx_channel_status (CEI_INT16 board, CEI_INT16

channel, pCEI_INT32 channelStatus, pCEI_INT32 messageCount)

This routine returns the current status of the specified receive channel

buffer. If either an ARINC 429 protocol error or buffer overflow bit was

set in the receive channel buffer status register, it is cleared on return from

this routine.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

ARS_INVARG Invalid channelStatus or messageCount

parameter.

ARS_INVHARVAL ARINC 429 channel is not available on the

device.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

CEI_INT16 channel (input) Specifies which channel this routine

is to access. Valid range is 0 to one less than

the installed receive channel count.

pCEI_INT32 channelStatus (output) Location to store the bitwise

representation of the current receiver buffer

status bits. The Status Register Bit

assignments are defined as follows:

 b0 - AR_BUFFER_MSG_AVAILABLE (1)

 Set indicates at least one message is ready to

read from the buffer. Clear indicates the

buffer is empty.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GET_RX_CHANNEL_STATUS

RAR-USB User's Manual 101

 b1 - AR_INVALID_MSG_DETECTED (2)

 Set indicates at least one ARINC 429

message protocol error was detected since

either this routine was previously invoked or

a message was last retrieved from the buffer.

Clear indicates no protocol error has been

encountered.

 b2 - AR_BUFFER_OVERFLOW_DETECTED (4)

 Set indicates the respective receive channel

encountered a message buffer overflow

since this routine was previously invoked.

Clear indicates no buffer overflow has been

encountered.

pCEI_INT32 messageCount (output) Location to store the number of

messages currently available in the

respective receive buffer, acquired from the

respective receive channel status register.

This value will only be valid if b0 in the

channelStatus return value is set, and has a

valid range of 1 - 2047.

Program Interface Library AR_GET_RX_COUNT

RAR-USB User's Manual 102

AR_GET_RX_COUNT

CEI_UINT32 ar_get_rx_count (CEI_INT16 board, CEI_INT16 channel)

This routine returns a count of the number of ARINC 429 messages

received on each channel since the device was last initialized (see

AR_LOADSLV). Both tracking ARINC 429 message count and

invocation of this routine are only valid when the API Receive Message

Buffering Mode is buffered/individual, and will return an error if the

Buffering Mode is merged.

If the API routine AR_CLR_RX_COUNT has been invoked by the host

application prior to this routine’s invocation, the API will reset the

message count for the respective receive channel.

Current count of ARINC 429 messages received on the specified channel.

CEI_INT16 board (input) Device this routine is to access.

Valid range is 0-127.

CEI_INT16 channel (input) Specifies which receive channel this

routine is to access.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GET_SNAP_DATA

RAR-USB User's Manual 103

AR_GET_SNAP_DATA

CEI_INT32 ar_get_snap_data (CEI_INT16 board, CEI_INT16 channel,

CEI_UINT16 label, CEI_UINT16 sdi, pCEI_UINT32 data)

This routine returns the latest ARINC 429 message received for the

specified channel/label combination from the AR-STREAM API’s

simulated snapshot buffer. Invocation of this routine is only valid when

the API Receive Message Buffering Mode is buffered/individual, and will

return an error if the Buffering Mode is merged.

If no message has been received for the specified channel/label since the

last initialization of the device, a data value of zero is returned for the

message.

ARS_NORMAL Routine execution was successful.

ARS_INVARG Invalid label, sdi,or null data parameter.

ARS_INVHARVAL Channel is not available on device.

ARS_INVBOARD An invalid board value was provided.

ARS_FAILURE The specified device has not been initialized

or the AR-STREAM API Receive Message

Buffering Mode is defined as merged.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device this routine is to access.

Valid range is 0-127.

CEI_INT16 channel (input) Specifies which receive channel this

routine is to access. Valid range is 0 to one

less than the installed receive channel count.

CEI_UINT16 label (input) The label value of interest.

CEI_UINT16 sdi (input) The SDI value of interest.

pCEI_UINT32 data (output) Location to store 32-bit ARINC429

message.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GET_SNAP_DATA_T

RAR-USB User's Manual 104

AR_GET_SNAP_DATA_T

CEI_INT32 ar_get_snap_data_t (CEI_INT16 board, CEI_INT16 channel,

CEI_UINT16 label, CEI_UINT16 sdi, pCEI_UINT32 data,

PTR_TIME_TAG_TYPE timeTag)

This routine returns the latest ARINC 429 message and its associated time-

stamp, received for the specified channel/label combination from the AR-

STREAM API’s simulated snapshot buffer. Invocation of this routine is

only valid when the API Receive Message Buffering Mode is

buffered/individual, and will return an error if the Buffering Mode is

merged.

If no message has been received for the specified channel/label since the

last initialization of the device, a data value of zero is returned for the

message.

ARS_NORMAL Routine execution was successful.

ARS_INVARG Invalid label, sdi,or null data parameter.

ARS_INVHARVAL Channel is not available on device.

ARS_INVBOARD An invalid board value was provided.

ARS_FAILURE The specified device has not been initialized

or the AR-STREAM API Receive Message

Buffering Mode is defined as merged.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device this routine is to access.

Valid range is 0-127.

CEI_INT16 channel (input) Specifies which receive channel this

routine is to access. Valid range is 0 to one

less than the installed receive channel count.

CEI_UINT16 label (input) The label value of interest.

CEI_UINT16 sdi (input) The SDI value of interest.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GET_SNAP_DATA_T

RAR-USB User's Manual 105

pCEI_UINT32 data (output) Location to store 32-bit ARINC429

message.

PTR_TIME_TAG_TYPE timeTag (output) The address that is to receive

the 64-bit one microsecond resolution time-

tag associated with the ARINC 429

message.

Program Interface Library AR_GET_STATUS

RAR-USB User's Manual 106

AR_GET_STATUS

CEI_UINT32 ar_get_status (CEI_INT16 board, pCEI_UINT16 state)

This routine returns the state of the FIFO Data Available bit for up to 16

receivers in a bitwise 16-bit value. Invocation of this routine is only valid

when the API Receive Message Buffering Mode is buffered/individual,

and will return a value of zero if the Buffering Mode is merged.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board

value was provided .

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

pCEI_UINT16 state (output) Location to store the receiver FIFO

status. The Status Register Bit Assignments

are defined as follows, ("1" indicates Data

Available, “0” indicates No Data Available):

b0 - ARINC 429 Receiver 1

b1 - ARINC 429 Receiver 2

 …

b14 - ARINC 429 Receiver 15

b15 - ARINC 429 Receiver 16

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GET_STORAGE_MODE

RAR-USB User's Manual 107

AR_GET_STORAGE_MODE

CEI_INT16 ar_get_storage_mode (CEI_INT16 board, pCEI_INT16

mode)

This routine is designed to provide compatibility with the legacy ARINC

device APIs. It returns the current state of the AR-STREAM API Receive

Message Buffering Mode. When the API Receive Message Buffering

Mode is buffered, each receiver is assigned an independent circular buffer

for storage of received messages. When the buffering mode is merged, all

messages remain in a single merged buffer as uploaded from the RAR-

USB device. Each receive data API routine processes the active storage

mode internally, acquiring data from the appropriate buffer. This routine

should be used in conjunction with the AR_SET_STORAGE_MODE

routine.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board

value was provided.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

pCEI_INT16 mode (output) The address that is to receive the

state of the current API storage mode. Valid

return values for this parameter are:

ARU_BUFFERED (0) buffered receive mode

ARU_MERGED (2) merged receive mode

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GET_TIME

RAR-USB User's Manual 108

AR_GET_TIME

CEI_INT16 ar_get_time (CEI_INT16 board, CEI_INT16 format,

pAR_TIMETAG_TYPE timeTag)

This routine returns the current time/timer value scaled from either the

RAR-USB device internal 64-bit timer or the most recently received IRIG

timer reference, as specified via the format parameter. If the requested

timer reference is IRIG, the return structure will also contain the IRIG

Sample timer-referenced time-stamp assigned when the sample was

received by the device.

ARS_NORMAL Routine execution was successful.

ARS_INVARG An invalid format parameter value was

provided.

ARS_INVBOARD An invalid board value was provided.

ARS_FAILURE The specified device has not been initialized.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

CEI_INT16 format (input) Time format requested. Valid

options are:

AR_TIMETAG_EXT_IRIG_64BIT 0

AR_TIMETAG_INT_USEC_64BIT 1

AR_TIMETAG_HOST_USEC_64BIT 2

AR_TIMETAG_INT_20USEC_32BIT 3

AR_TIMETAG_INT_MSEC_32BIT 4

AR_TIMER_X20_COMPAT_32BIT 6

pAR_TIMETAG_TYPE timeTag

 (output) Current device timer or translated

IRIG sample value. The timeTag.timeTag

structure member will be defined as follows

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GET_TIME

RAR-USB User's Manual 109

based on the supplied format parameter

value:

AR_TIMETAG_EXT_IRIG_64BIT - 64-bit IRIG sample time in

microseconds since beginning of current year. The returned

timeTag.R.referenceTimeTag structure member will contain

the board internal timer-referenced time-stamp assigned when

the last bit of the IRIG sample was processed by the RAR-

USB IRIG receiver.

AR_TIMETAG_INT_USEC_64BIT - 64-bit internal board timer

in microseconds.

AR_TIMETAG_HOST_USEC_64BIT - 64-bit host operating

system time scaled to have a 1 microsecond resolution.

AR_TIMETAG_INT_20USEC_32BIT - 32-bit internal board

timer in microseconds.

AR_TIMETAG_INT_MSEC_32BIT - 32-bit internal board timer

scaled to have a 20 microsecond resolution.

AR_TIMER_X20_COMPAT_32BIT - 32-bit internal board timer

scaled to have a 1 millisecond resolution.

Program Interface Library AR_GET_TIMERCNTL

RAR-USB User's Manual 110

AR_GET_TIMERCNTL

CEI_UINT32 ar_get_timercntl (CEI_INT16 board)

This routine is provided for legacy support of the CEI-x20 ARINC API,

returning the current 32-bit, 1 millisecond resolution time reference value

based on the current application-specified timer mode, (specified through

AR_SET_CONFIG using the attribute ARU_RX_TIMETAG_MODE). If

the current timer mode is assigned to any 64-bit timer, the least-significant

32-bits of the internal device timer will be returned (this applies to IRIG,

host, or internal timer). If the current timer mode is assigned to either of

the 32-bit CEI-x20 API compatibility or 20 microsecond (IP-AVIONICS)

resolution modes, the respective 32-bit adjusted timer value will be

returned.

The 32-bit timer value.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GETWORD

RAR-USB User's Manual 111

AR_GETWORD

CEI_INT16 ar_getword (CEI_INT16 board, CEI_INT16 channel,

pCEI_VOID destination)

This routine retrieves the next unread message from the specified receive

channel. If it successfully returns data message, there may or may not be

more messages in the buffer. It only means there was at least one message

in the buffer. Subsequent calls would be required to determine if more

messages are available in the buffer. If this routine returns a status value

of ARS_NODATA, the buffer is empty.

The channel value passed to this routine corresponds to the ARINC 429

receive channel index, starting with zero. If the channel value is set to 32

and an ARINC 573/717 receiver exists, it is used as the designated receive

channel buffer.

ARS_GOTDATA A message has been retrieved.

ARS_NODATA No data available.

ARS_BAD_MESSAGE An invalid length ARINC 429 message was

received on the specified channel.

ARS_INVARG A null destination parameter value was

provided.

ARS_INVHARVAL Channel is not available on device.

ARS_INVBOARD An invalid board value was provided.

ARS_FAILURE The specified device has not been initialized.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

Syntax

Description

Return Value

Program Interface Library AR_GETWORD

RAR-USB User's Manual 112

CEI_INT16 board (input) Device this routine is to access.

Valid range is 0-127.

CEI_INT16 channel (input) Specifies which receive channel this

routine is to access. Valid range is 0 to one

less than the installed receive channel count.

pCEI_VOID destination (output) The address that is to receive the

message. The format of the message value

is dependent on the protocol assigned to the

respective receive channel (see Receive

Message Buffering).

Arguments

Program Interface Library AR_GETWORDT

RAR-USB User's Manual 113

AR_GETWORDT

CEI_INT16 ar_getwordt (CEI_INT16 board, CEI_INT16 channel,

pCEI_VOID destination, pCEI_VOID timetag)

This routine retrieves the next unread message from either the Merged

Receive Buffer or the API individual receive buffer for the specified

ARINC 429 receive channel. If it successfully returns data message, there

may or may not be more messages data in the buffer. It means only that

there was at least one message in the buffer. Subsequent calls are required

to determine if more messages are available in the buffer. If this routine

returns a status value of ARS_NODATA, the buffer is empty.

ARS_GOTDATA A message has been retrieved.

ARS_NODATA No data available.

ARS_BAD_MESSAGE An invalid length ARINC 429 message was

received on the specified channel.

ARS_INVARG A null data parameter value was provided.

ARS_INVHARVAL Channel is not available on device.

ARS_INVBOARD An invalid board value was provided.

ARS_FAILURE The specified device has not been initialized.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device this routine is to access.

Valid range is 0-127.

CEI_INT16 channel (input) Specifies which channel this routine

is to access. Valid range is 0 to one less than

the installed receive channel count.

pCEI_VOID destination (output) The address that is to receive the

retrieved ARINC 429 message.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GETWORDT

RAR-USB User's Manual 114

pCEI_VOID timetag (output) The address that is to receive the

32-bit time-tag associated with the data,

(resolution is programmable). If the merged

receive mode is active for the specified

channel, the upper five bits of the 32-bit

time-tag word contain the receive channel

number on which the data was received.

Program Interface Library AR_GETWORD_XT

RAR-USB User's Manual 115

AR_GETWORD_XT

CEI_INT16 ar_getword_xt (CEI_INT16 board, CEI_INT16 channel,

pCEI_VOID data, pAR_TIMETAG_TYPE timeTagRef)

This routine retrieves the next unread ARINC 429 message and the

associated time-tag structure from the specified receive channel. If it

successfully returns a message, there may or may not be more messages in

the buffer. It means only that there was at least one message in the buffer.

Subsequent calls are required to determine if more messages are available

in the buffer. If this routine returns a status value of ARS_NODATA, the

buffer is empty. The time-tag structure is required to be defined by the host

application with this routine.

ARS_GOTDATA A message has been retrieved.

ARS_NODATA No data available.

ARS_BAD_MESSAGE An invalid length ARINC 429 message was

received on the specified channel.

ARS_INVARG A null data or timeTagRef parameter value

was provided.

ARS_INVHARVAL Channel is not available on device.

ARS_INVBOARD An invalid board value was provided.

ARS_FAILURE The specified device has not been initialized.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device this routine is to access.

Valid range is 0-127.

CEI_INT16 channel (input) Specifies which channel this routine

is to access. Valid range is 0 to one less than

the installed receive channel count.

pCEI_VOID data (output) The address that is to receive the

32-bit ARINC 429 message.

pAR_TIMETAG_TYPE timeTagRef (output)

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GETWORD_XT

RAR-USB User's Manual 116

 The address that is to receive the time-tag

data structure associated with the message.

Program Interface Library AR_GO

RAR-USB User's Manual 117

AR_GO

CEI_INT16 ar_go (CEI_INT16 board)

This routine enables the message scheduler and all receive message

processing on the RAR-USB device.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An invalid board value was provided.

ARS_FAILURE The specified device has not been initialized.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_HAS_ERROR_OCCURRED

RAR-USB User's Manual 118

AR_HAS_ERROR_OCCURRED

CEI_INT16 ar_has_error_occurred (CEI_INT16 board, CEI_INT16

statusCode, pCEI_INT16 state)

Some legacy ARINC API routines return valid bitwise and/or numeric

values that may conflict with the values of error codes returned when error

conditions are encountered. This routine provides the method to verify if

an error condition was actually encountered when the return status from

one of these routines matches the value of a valid error code.

ARS_NORMAL Routine execution was successful.

ARS_INVARG The statusCode parameter value is not a

valid AR-STREAM API error code or the

state parameter is NULL.

ARS_INVBOARD An invalid board value was provided.

ARS_FAILURE The specified device has not been initialized.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

CEI_INT16 statusCode (input) Any valid error code returned by an

AR-STREAM API routine.

pCEI_INT16 state (output) Indicates if the specified statusCode

value has been returned by any API function

since the last initialization/reset of the

specified board.

 TRUE if the supplied statusCode value has

been encountered and returned

 FALSE if the supplied statusCode value has

not been encountered.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_INITIALIZE_API

RAR-USB User's Manual 119

AR_INITIALIZE_API

CEI_INT16 ar_initialize_api (CEI_INT16 board)

This routine is provided for backward compatibility with other ARINC

429 API libraries and should not be invoked prior to AR_LOADSLV. It

initializes the API and device host interface to an initial state.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An invalid board value was provided.

ARS_FAILURE The specified device has not been initialized.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_INITIALIZE_DEVICE

RAR-USB User's Manual 120

AR_INITIALIZE_DEVICE

CEI_INT16 ar_initialize_device (CEI_INT16 board)

This routine is provided for backward compatibility with other ARINC

429 API libraries and should not be invoked prior to AR_LOADSLV. It

initializes the API and device host interface to an initial state. The default

setup of the device following execution of this routine is:

◼ ARINC 429 Transmitter FIFOs disabled, speed set for 100Kbps with

the fast slew rate and ODD parity enabled.

◼ ARINC 429 Receiver FIFOs disabled, speed set for 100Kbps, parity

checking enabled, and internal wrap disabled.

◼ ARINC 717 Transmitter and Receiver FIFOs disabled, set for HBP

encoding at 384BPS (32-word subframe), auto-detect enabled, and

Internal Wrap disabled.

◼ Message Scheduler disabled, no messages defined.

◼ Transmit Playback disabled and playback buffer empty.

◼ All receive label filtering disabled.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An invalid board value was provided.

ARS_FAILURE The specified device has not been initialized.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_LABEL_FILTER

RAR-USB User's Manual 121

AR_LABEL_FILTER

CEI_INT16 ar_label_filter (CEI_INT16 board, CEI_INT16 channel,

CEI_UINT16 label, CEI_INT16 action)

RAR-USB devices support the ability to filter ARINC 429 messages by

the 8-bit label value. Once filtering has been enabled for a specified

channel/label combination, data received with that label value would be

discarded until label filtering for the specified label has been disabled.

Label filtering is disabled for all labels by default.

ARS_NORMAL Routine execution was successful.

ARS_INVARG An invalid label or action value was

provided.

ARS_INHARVAL The specified channel does not support label

filtering.

ARS_INVBOARD An invalid board value was provided.

ARS_FAILURE The specified device has not been initialized.

ARS_LOCK_ACCESS_FAILED Either the acquisition or

relinquish of the access lock to the API

shared device interface data structure failed.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

CEI_INT16 channel (input) channel label filter table this routine

is to access. The valid range is 0 to one less

than the installed receive channel count.

CEI_UINT16 label (input) The label of interest. Valid range is

0-255. Also valid is ARU_ALL_LABELS

(511), which invokes the action for all labels

on the specified channel.

CEI_INT16 action (input) Enable or disable filtering for this

combination of board/channel/label. Valid

values are:

Syntax

Description

Return Value

Arguments

Program Interface Library AR_LABEL_FILTER

RAR-USB User's Manual 122

ARU_FILTER_ON (1) or

FILTER_SEQUENTIAL (0x10) enables

filtering on this label

ARU_FILTER_OFF (0) disables filtering

(default state is to not filter any labels).

Program Interface Library AR_LOADSLV

RAR-USB User's Manual 123

AR_LOADSLV

CEI_INT16 ar_loadslv (CEI_INT16 board, CEI_UINT32 base_seg,

CEI_INT32 base_port, CEI_UINT16 ram_size)

This routine opens a session with the specified RAR-USB device and

initializes the API. The default setup of the API and the device following

execution of this routine is:

◼ ARINC 429 Transmitter FIFOs disabled, speed set for 100Kbps with

the fast slew rate and ODD parity enabled.

◼ ARINC 429 Receiver FIFOs disabled, speed set for 100Kbps, parity

checking enabled, and internal wrap disabled.

◼ ARINC 717 Transmitter and Receiver FIFOs disabled, set for HBP

encoding at 384BPS (32-word subframe), auto-detect enabled, and

Internal Wrap disabled.

◼ Message Scheduler disabled, no messages defined.

◼ Transmit Playback disabled and playback buffer empty.

◼ All receive label filtering disabled.

◼ API simulated Receive Mode set to individual channel buffering

If any portion of the initialization fails or the device is not detected, a

status other than ARS_NORMAL is returned. If the return status is

ARS_DRIVERFAIL, an invocation of AR_GET_ERROR should supply

an explanation of the installation error condition.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An invalid board value was provided.

ARS_DRIVERFAIL The device driver failed to open a session

with the device, either because the device is

not properly installed in the host system or a

resource conflict is inhibiting device driver

initialization.

ARS_FAILURE Failed to access the driver interface library.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_LOADSLV

RAR-USB User's Manual 124

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

CEI_UINT32 base_seg (input) This parameter is ignored, (supplied

for ARINC API compatibility only).

CEI_INT32 base_port (input) This parameter is ignored, (supplied

for ARINC API compatibility only).

CEI_UINT16 ram_size (input) This parameter is ignored, (supplied

for ARINC API compatibility only).

Program Interface Library AR_MODIFY_MSG

RAR-USB User's Manual 125

AR_MODIFY_MSG

CEI_INT16 ar_modify_msg (CEI_INT16 board, CEI_INT16 channel,

CEI_INT16 msgNumber, CEI_INT16 rate, CEI_INT32 data)

This routine modifies an existing 32-bit ARINC message for periodic

retransmission, originally created through use of the AR_DEFINE_MSG

or AR_DEFINE_MSG_BLOCK API routines.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An invalid board value was provided.

ARS_INVARG An invalid msgNumber value was provided.

ARS_INVHARVAL An invalid channel value was provided.

ARS_FAILURE The specified device has not been initialized.

ARS_LOCK_ACCESS_TIMEOUT The shared data structure access

lock was not acquired.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

CEI_INT16 channel (input) Channel message scheduler table this

routine is to access. The valid range is 0 to

one less than the number of installed

transmit channels.

CEI_INT16 msgNumber (input) The unique message scheduler table

entry index assigned to this message, as

returned for the respective message from the

routine AR_DEFINE_MSG or

AR_DEFINE_MSG_BLOCK.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_MODIFY_MSG

RAR-USB User's Manual 126

CEI_INT16 rate (input) Periodic transmission rate, defined in

milliseconds. A rate value of zero will

disable message transmission for this

message scheduler table entry and make this

entry available for reuse on the next

invocation of AR_DEFINE_MSG or

AR_DEFINE_MSG_BLOCK.

CEI_INT32 data (input) The updated 32-bit ARINC message

to transmit.

Program Interface Library AR_MODIFY_MSG_BLOCK

RAR-USB User's Manual 127

AR_MODIFY_MSG_BLOCK

CEI_INT16 ar_modify_msg_block (CEI_INT32 numberOfEntries,

pAR_SCHEDULED_MSG_ENTRY_TYPE messageEntry)

This routine provides a method to modify the channel assignment or rate

and data values on a series of 32-bit ARINC messages previously defined

for periodic retransmission via AR_DEFINE_MSG_BLOCK.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An invalid board structure member value

was provided.

ARS_INVARG An invalid messageIndex structure member

value was provided.

ARS_INVHARVAL An invalid channel structure member value

was provided.

ARS_FAILURE The specified device has not been initialized.

ARS_LOCK_ACCESS_TIMEOUT The shared data structure access

lock was not acquired.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT32 numberOfEntries (input) The number of entries to modify

using the subsequent structure pointer

parameter, messageEntry.

pAR_SCHEDULED_MSG_ENTRY_TYPE messageEntry (input)

 array of structures of message definition content, defined as follows:

CEI_UINT32 messageIndex The unique message scheduler table entry

index assigned to this message. This

messageIndex structure member will have

been defined in a previous invocation of

AR_DEFINE_MSG_BLOCK.

CEI_UINT32 board Device to access. Valid range is 0-127.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_MODIFY_MSG_BLOCK

RAR-USB User's Manual 128

CEI_UINT32 channel Which channel portion of the message

scheduler table this routine is to access. The

valid range is 0 to one less than the number

of installed transmit channels.

CEI_UINT32 rate Periodic transmission rate, in milliseconds.

A rate value of zero will disable message

transmission.

CEI_UINT32 start Not supported during message modification.

CEI_UINT32 txCount Not supported during message modification.

CEI_UINT32 data The 32-bit ARINC message to transmit.

Program Interface Library AR_NUM_RCHANS

RAR-USB User's Manual 129

AR_NUM_RCHANS

CEI_INT16 ar_num_rchans (CEI_INT16 board)

This routine retrieves the number of receive channels installed on the

specified device.

Any non-zero value number of installed receive channels.

Zero An uninitialized board or invalid board

value was provided.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_NUM_XCHANS

RAR-USB User's Manual 130

AR_NUM_XCHANS

CEI_INT16 ar_num_xchans (CEI_INT16 board)

This routine retrieves the number of transmit channels installed on the

specified device.

Any non-zero value number of installed transmit channels.

Zero An uninitialized board or invalid board

value was provided.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_OPEN

RAR-USB User's Manual 131

AR_OPEN

CEI_INT16 ar_open (CEI_INT16 board)

This routine opens a session with the specified RAR-USB device and

initializes the API. The default setup of the API and the device following

execution of this routine is:

◼ ARINC 429 Transmitter FIFOs disabled, speed set for 100Kbps with

the fast slew rate and ODD parity enabled.

◼ ARINC 429 Receiver FIFOs disabled, speed set for 100Kbps, parity

checking enabled, and internal wrap disabled.

◼ ARINC 717 Transmitter and Receiver FIFOs disabled, set for HBP

encoding at 384BPS (32-word sub-frame), auto-detect enabled, and

Internal Wrap disabled.

◼ Message Scheduler disabled, no messages defined.

◼ Transmit Playback disabled and playback buffer empty.

◼ All receive label filtering disabled.

◼ API simulated Receive Mode set to individual channel buffering

If any portion of the initialization fails or the device is not detected, a

status other than ARS_NORMAL is returned. If the return status is

ARS_DRIVERFAIL, an invocation of AR_GET_ERROR should supply

an explanation of the installation error condition.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An invalid board value was provided.

ARS_DRIVERFAIL The device driver failed to open a session,

either because the device is not properly

installed in the host system or a resource

conflict is inhibiting device driver

initialization.

ARS_FAILURE Failed to access the driver interface library.

ARS_RWR_INSERT_REQ_FAIL The device failed a

communications initialization request.

ARS_RWR_EXECUTE_FAIL The device failed a communications

block execution request.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_PUT_429_MESSAGE

RAR-USB User's Manual 132

AR_PUT_429_MESSAGE

CEI_INT16 ar_put_429_message (CEI_INT16 board, CEI_INT16

channel, CEI_INT32 data)

This routine places the supplied message data in the specified transmit

channel burst transmit buffer. When this routine returns, the data has not

necessarily been sent, it has only been placed in the respective transmit

buffer. If messages are present in the respective device transmit buffer

ahead of it, this data will be transmitted in turn. If the specified transmit

buffer is full, an overflow status is returned.

Since ARINC 429 transmit data rates are relatively slow, almost any host can generate
transmit data at a much faster rate than data is transmitted.

ARS_NORMAL Routine execution was successful.

ARS_XMITOVRFLO A transmit buffer overrun occurred.

ARS_INVHARVAL An invalid channel value was provided.

ARS_INVBOARD An invalid board value was provided.

ARS_FAILURE The specified device has not been initialized.

ARS_LOCK_ACCESS_TIMEOUT The shared data structure access

lock was not acquired.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

CEI_INT16 channel (input) ARINC 429 transmit channel this

routine is to access. The valid range is 0 to

one less than the number of installed

transmit channels.

CEI_INT32 data (input) ARINC 429 message to transmit in

standard ARINC 429 format.

Syntax

Description

Note:

Return Value

Arguments

Program Interface Library AR_PUT_573_FRAME

RAR-USB User's Manual 133

AR_PUT_573_FRAME

CEI_INT16 ar_put_573_frame (CEI_INT16 board, CEI_UINT32

numberWords, pCEI_UINT32 transmitCount, pCEI_INT16 arincData)

This routine attempts to transfer numberWords of ARINC 573/717 data

from the arincData source to the device ARINC 573/717 transmit buffer.

The amount of data transferred to the transmitter is based on what is

available in the buffer, with the actual number of words transferred

indicated in the return value of transmitCount.

Since ARINC 573/717 transmit data rates are relatively slow, almost any host can generate
transmit frame data at a much faster rate than frame data is actually transmitted.

ARS_NORMAL Routine execution was successful.

ARS_XMITOVRFLO A transmit buffer overrun occurred.

ARS_INVARG Either of the transmitCount or arincData

parameters were NULL.

ARS_INHARVAL The specified board does not support the

ARINC 573/717 protocol.

ARS_INVBOARD An invalid board value was provided.

ARS_FAILURE The specified device has not been initialized.

ARS_LOCK_ACCESS_TIMEOUT The shared data structure access

lock was not acquired.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

CEI_UINT32 numberWords (input) Number of words to copy from the

source 573 frame to the transmit buffer.

pCEI_UINT32 transmitCount (output) Indicates how many words were

copied from the source 573 frame to the

transmit buffer, either less than or equal to

the value of numberWords.

Syntax

Description

Note:

Return Value

Arguments

Program Interface Library AR_PUT_573_FRAME

RAR-USB User's Manual 134

pCEI_INT16 arincData (output) Pointer to the array of ARINC

573/717 frame data. The format of each

data word in the source ARINC 573/717

frame is defined as follows:

15 – 12 11 - 0

RESERVED data

data: the 12-bit ARINC 573/717 data.

Program Interface Library AR_PUTBLOCK

RAR-USB User's Manual 135

AR_PUTBLOCK

CEI_INT32 ar_putblock (CEI_UINT32 board, CEI_UINT32 channel,

CEI_INT32 maxMessages, CEI_INT32 offset, pCEI_INT32 data,

pCEI_INT32 actualCount)

This routine transfers the array of ARINC 429 messages to the specified

transmit channel buffer. When this routine returns, the data has not been

transmitted, it has only been placed in the transmit buffer. If other data is

in the transmit buffer ahead of it, this data is transmitted in turn.

Since ARINC 429 transmit data rates are relatively slow, almost any host can generate
transmit data at a much faster rate than data is transmitted.

ARS_NORMAL Routine execution was successful.

ARS_XMITOVRFLO A transmit buffer overrun occurred.

ARS_INVHARVAL An invalid channel value was provided.

ARS_INVBOARD An invalid board value was provided.

ARS_FAILURE The specified device has not been initialized.

ARS_LOCK_ACCESS_TIMEOUT The shared data structure access

lock was not acquired.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_UINT32 board (input) Device to access. Valid range is 0-

127.

CEI_UINT32 channel (input) ARINC 429 transmit channel this

routine is to access. The valid range is 0 to

one less than the number of installed

transmit channels.

CEI_INT32 maxMessages (input) The number of messages to transmit.

Syntax

Description

Note:

Return Value

Arguments

Program Interface Library AR_PUTBLOCK

RAR-USB User's Manual 136

CEI_INT32 offset Unused legacy parameter.

pCEI_INT32 data (input) Array supplying 32-bit ARINC data

values.

pCEI_INT32 actualCount (output) The number of messages copied to

the transmit buffer.

Program Interface Library AR_PUTBLOCK_MULTI_CHAN

RAR-USB User's Manual 137

AR_PUTBLOCK_MULTI_CHAN

CEI_INT32 ar_putblock_multi_chan (CEI_UINT32 board, CEI_INT32

maxMessages, pCEI_UINT32 channels, pCEI_INT32 data, pCEI_INT32

actualCount)

This routine transfers messages from the data array source to the channel

transmit buffer corresponding to the respective transmit channel element of

the channels array. When this routine returns, the data has not necessarily

been transmitted, it has only been placed in the respective transmit

buffer(s). If other data is in the transmit buffer ahead of it, this data will be

transmitted in turn.

Since ARINC 429 transmit data rates are relatively slow, almost any host can generate
transmit data at a much faster rate than data is transmitted.

ARS_NORMAL Routine execution was successful.

ARS_XMITOVRFLO A transmit buffer overrun occurred.

ARS_INVHARVAL An invalid channel value was provided.

ARS_INVBOARD An invalid board value was provided.

ARS_FAILURE The specified device has not been initialized.

ARS_LOCK_ACCESS_TIMEOUT The shared data structure access

lock was not acquired.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

Syntax

Description

Note:

Return Value

Program Interface Library AR_PUTBLOCK_MULTI_CHAN

RAR-USB User's Manual 138

CEI_UINT32 board (input) Device to access. Valid range is 0-

127.

CEI_INT32 maxMessages (input) The number of messages to transmit.

pCEI_UINT32 channels (input) Array supplying the ARINC 429

transmit channel on which this routine is to

transmit the respective ARINC 429 data.

The transmit channel index in each element

of this array corresponds directly to the

ARINC 429 message defined in the

respective element of the data array. The

valid range for each element of this array is

0 to one less than the number of installed

transmit channels.

pCEI_INT32 data (input) Array supplying 32-bit ARINC data

values.

pCEI_INT32 actualCount (input) The number of messages transmitted.

Arguments

Program Interface Library AR_PUTFILTER

RAR-USB User's Manual 139

AR_PUTFILTER

CEI_INT32 ar_putfilter (CEI_UINT32 board, CEI_UINT32 channel,

pCEI_CHAR filterTable)

This routine assigns an entire channel portion of the label filter table for

the specified receive channel. Each receive channel has a separate area in

the device label filter table, which is used by the firmware to control

storage of received labels. Each element of the filter table consists of a

single bit field defined for compatibility with legacy ARINC 429 product

lines as follows:

FILTER_SEQUENTIAL 0x10 If CLEAR add label to circular receive buffer

The filter buffer for a single channel is defined as follows:

filterTable[MAX_ESSM][MAX_SDI][MAX_LABEL]

and accessed as follows in the array referenced by filterTable:

filterTable[eSSM][SDI][label]

where the bits of the ARINC 429 message are defined as follows:

eSSM SDI label

30, 29, 28 9, 8 7, 6, 5, 4, 3, 2, 1, 0

To write individual label filter table elements, refer to the API routines

AR_ENH_LABEL_FILTER and AR_LABEL_FILTER.

ARS_NORMAL Routine execution was successful.

ARS_INVHARVAL An invalid channel value was provided.

ARS_INVBOARD An invalid board value was provided.

ARS_FAILURE The specified device has not been initialized.

ARS_LOCK_ACCESS_TIMEOUT The shared data structure access

lock was not acquired.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_UINT32 board (input) Device to access. Valid range is 0-

127.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_PUTFILTER

RAR-USB User's Manual 140

CEI_UINT32 channel (input) Specifies which receive channel this

routine is to access. Valid range is 0 to one

less than the installed receive channel count.

pCEI_CHAR filterTable (input) Array containing the contents of the

specified channel’s label filter table. This

array must have an allocation of 8Kbytes.

Program Interface Library AR_PUTWORD

RAR-USB User's Manual 141

AR_PUTWORD

CEI_INT16 ar_putword (CEI_INT16 board, CEI_INT16 channel,

CEI_INT32 arincdata)

This routine places the supplied message data in the specified transmit

channel burst transmit buffer. When this routine returns, the data has not

necessarily been sent, it has only been placed in the respective transmit

buffer. If messages are present in the respective device transmit buffer

ahead of it, this data will be transmitted in turn. If the specified transmit

buffer is full, an overflow status is returned.

The channel value passed to this routine corresponds to the ARINC 429

transmit channel index, starting with zero. If that value is set to 32 and an

ARINC 573/717 transmitter exists, it is used as the designated transmit

channel buffer.

Since ARINC transmit data rates are relatively slow, almost any host can generate transmit
data at a much faster rate than data is transmitted.

ARS_NORMAL Routine execution was successful.

ARS_XMITOVRFLO A transmit buffer overrun occurred.

ARS_INVHARVAL An invalid channel value was provided.

ARS_INVBOARD An invalid board value was provided.

ARS_FAILURE The specified device has not been initialized.

ARS_LOCK_ACCESS_TIMEOUT The shared data structure access

lock was not acquired.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

Syntax

Description

Note:

Return Value

Program Interface Library AR_PUTWORD

RAR-USB User's Manual 142

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

CEI_INT16 channel (input) Transmit channel this routine is to

access. The valid range is 0 to one less than

the installed transmit channel count.

CEI_INT32 arincdata (input) 32-bit ARINC 429 message to

transmit.

Arguments

Program Interface Library AR_RESET

RAR-USB User's Manual 143

AR_RESET

CEI_INT16 ar_reset (CEI_INT16 board)

This routine reinitializes the device to the same initial state as that

following an invocation of AR_LOADSLV.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An invalid board value was provided.

ARS_FAILURE The specified device has not been initialized.

ARS_LOCK_ACCESS_TIMEOUT The shared data structure access

lock was not acquired.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_RESET_TIMERCNT

RAR-USB User's Manual 144

AR_RESET_TIMERCNT

CEI_VOID ar_reset_timercnt (CEI_INT16 board)

This routine is designed to provide compatibility with the legacy ARINC

429 product lines. It resets the RAR-USB device internal one-

microsecond timer to zero.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

Syntax

Description

Arguments

Program Interface Library AR_SET_CONFIG

RAR-USB User's Manual 145

AR_SET_CONFIG

CEI_INT16 ar_set_config (CEI_INT16 board, CEI_INT16 item,

CEI_UINT32 value)

This routine provides a means to define general device configuration

attributes, as well as limited individual channel configuration attributes. It

is provided for backward compatibility to legacy ARINC 429 product

based applications. AR_SET_DEVICE_CONFIG is the desired routine

for defining channel and board-level configuration items.

ARS_NORMAL Routine execution was successful.

ARS_INVARG The item argument value is not supported by

this API routine.

ARS_INVHARVAL The item argument value is not supported by

this device configuration.

ARS_INVBOARD An invalid board value was provided.

ARS_FAILURE The specified device has not been initialized.

ARS_LOCK_ACCESS_TIMEOUT The shared data structure access

lock was not acquired.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

CEI_INT16 item (input) Attribute about which to set

information:

ARU_XMIT_RATE transmit rate for all transmitters.

ARU_RECV_RATE receive rate for all receivers.

ARU_PARITY parity for all transmitters and

receivers.

ARU_INTERNAL_WRAP enables internal wrap mode for all

receivers.

ARU_RX_CH01_BIT_RATE –

ARU_RX_CH16_BIT_RATE receiver 1 - 16 bit rate.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_SET_CONFIG

RAR-USB User's Manual 146

ARU_TX_CH01_BIT_RATE –

ARU_TX_CH05_BIT_RATE transmitter 1 - 5 bit rate.

ARU_RX_CH01_PARITY –

ARU_RX_CH16_PARITY receiver 1 - 16 parity.

ARU_TX_CH01_PARITY –

ARU_TX_CH05_PARITY transmitter 1 - 5 parity.

ARU_TX_CH01_SHUT_OFF –

ARU_TX_CH05_SHUT_OFF transmitter 1 - 5 disable.

ARU_TX_CH01_LB_INJ – transmitter 1 - 5 low bit

ARU_TX_CH05_LB_INJ error enable.

ARU_TX_CH01_HB_INJ – transmitter 1 - 5 high bit

ARU_TX_CH05_HB_INJ error enable.

ARU_TX_CH01_GAP_INJ – transmitter 1 - 5

ARU_TX_CH05_GAP_INJ message gap error enable.

ARU_RX_TIMETAG_MODE the timer/time-tag source and

resolution

ARU_ACCESS_SNAPSHOT_BUFFER snapshot storage mode

ARU_IRIG_WRAP_ENABLE enables IRIG receiver internal wrap

ARU_IRIG_INPUT_THRESHOLD sets the IRIG DAC threshold

ARU_IRIG_ADJUST_THRESHOLD invokes an IRIG DAC auto-

adjustment procedure

ARU_IRIG_QUICK_ADJUSTMENT invokes an IRIG DAC auto-

adjustment procedure

ARU_IRIG_SET_BIAS assigns an offset to the board IRIG

time value

CEI_UINT32 value (input) the value to set the item.

If the specified item is ARU_XMIT_RATE (1) or ARU_RECV_RATE

(2), valid value parameter selections are:

AR_HIGH (0) high rate (100Kbs)

AR_LOW (1) low rate (12.5Kbs)

Any other value specifies a frequency value in Hertz.

If the specified item is ARU_RX_CHnn_BIT_RATE (500-515), where nn

is the receiver channel (01 - 15), valid value parameter selections are:

AR_HIGH (0) high rate (100Kbs)

Program Interface Library AR_SET_CONFIG

RAR-USB User's Manual 147

AR_LOW (1) low rate (12.5Kbs)

Any other value specifies a frequency value in Hertz.

If the specified item is ARU_TX_CHnn_BIT_RATE (700-704), where nn

is the transmitter channel (01 - 05), valid value parameter selections are:

AR_HIGH (0) high rate (100Kbs)

AR_LOW (1) low rate (12.5Kbs)

Any other value specifies a frequency value in Hertz.

Any specified transmit bus frequency below 15KHz will be assigned to a slow slew rate.
Any specified transmit bus frequency above 15KHz will be assigned to a fast slew rate.

If the specified item is ARU_PARITY (3), the value parameter specifies

the parity selection for all transmit and receive channels.

AR_ODD (0) odd transmit parity and receive parity detect enabled

AR_EVEN (1) even transmit parity and rx parity detect enabled

AR_OFF (8) transmit parity and receive parity detect disabled

AR_RAW (0x2000) transmit parity and rx parity detect disabled

If the specified item is ARU_RX_CHnn_PARITY (900-915), where nn is

the receiver channel (01 - 15), valid value parameter selections are:

AR_ODD (0) receiver parity detection enabled

AR_OFF (8) receiver parity detection disabled

AR_RAW (0x2000) receiver parity detection disabled

If the specified item is ARU_TX_CHnn_PARITY (1100-1104), where nn

is the transmitter channel (01 - 05), valid value parameter selections are:

AR_ODD (0) odd transmitter parity

AR_EVEN (1) even transmitter parity

AR_OFF (8) transmitter parity disabled

AR_RAW (0x2000) transmitter parity disabled

If the requested item is ARU_TX_CHnn_SHUT_OFF (1700-1704), where

nn is the transmitter channel (01 - 05), valid value parameter selections

are:

AR_ON (7) external transmission is disabled

AR_OFF (8) external transmission is enabled

For the RAR-PCIE and RAR15-XMC-XT boards, disabling external

transmission also causes the transmit pins to switch to a tri-state condition;

for all other boards the transmit pins will switch to a null condition.

If the requested item is ARU_TX_CHnn_HB_INJ (3300-3304), where nn

is the transmitter channel (01 - 05), valid value parameter selections are:

AR_ON (7) 33-bit transmission is enabled

AR_OFF (8) standard 32-bit transmission is enabled

If the requested item is ARU_TX_CHnn_LB_INJ (3500-3504), where nn

is the transmitter channel (01 - 05), valid value parameter selections are:

AR_ON (7) 31-bit transmission is enabled

AR_OFF (8) standard 32-bit transmission is enabled

Note

Program Interface Library AR_SET_CONFIG

RAR-USB User's Manual 148

If the requested item is ARU_TX_CHnn_GAP_INJ (3700-3704), where

nn is the transmitter channel (01 - 05), valid value parameter selections

are:

AR_ON (7) 3-bit message gap is used

AR_OFF (8) standard 4-bit message gap is used

If the specified item is ARU_INTERNAL_WRAP (4), valid value

parameter selections are:

AR_WRAP_ON (0) internal wrap enabled

AR_WRAP_OFF (1) internal wrap disabled

If the specified item is ARU_RX_TIMETAG_MODE (440), valid value

parameter selections represent the timer/time-tag source and resolution.

This item specifies the resolution of any timer-read or receive data time-

tag value obtained via the API, with value selections defined as follows:

AR_TIMETAG_EXT_IRIG_64BIT (0)

AR_TIMETAG_INT_USEC_64BIT (1)

AR_TIMETAG_INT_20USEC_32BIT (3)

AR_TIMETAG_INT_MSEC_32BIT (4)

A value of AR_TIMETAG_EXT_IRIG_64BIT selects the source as

the external IRIG receiver, if connected; otherwise, if the IRIG

signal is not internally wrapped this selection would be invalid. All

other values represent various timer/time-tag LSB resolution values

based on the internal RAR-USB device timer.

If the specified item is ARU_ACCESS_SNAPSHOT_BUFFER (38), a

valid value parameter for selecting the API Snapshot Buffer storage mode

is:

ARU_LABEL_ONLY (0) messages stored based on label

ARU_LABEL_WITH_SDI (1) messages stored based on the

combined label and SDI field values

If the specified item is ARU_IRIG_WRAP_ENABLE (441), valid value

parameter selections are:

AR_ON (7) IRIG receiver internal wrap enabled

AR_OFF (8) IRIG receiver internal wrap disabled

If the specified item is ARU_IRIG_INPUT_THRESHOLD (442), the

value parameter specifies the IRIG receiver threshold voltage in millivolts.

Program Interface Library AR_SET_CONFIG

RAR-USB User's Manual 149

The items ARU_IRIG_ADJUST_THRESHOLD (443) and

ARU_IRIG_QUICK_ADJUSTMENT (444) invoke the IRIG DAC auto-

adjustment procedure. This procedure will determine the low and high

threshold values at which the incoming IRIG signal is present. It then

determines the best threshold level for the IRIG DAC, and returns the

value to the application in place of a returned status (failures are indicated

via return value of ARS_FAILURE). This execution of this adjustment

should require less than one second.

If the specified item is ARU_IRIG_SET_BIAS (446), a valid value

parameter consists of an offset to the board-supplied IRIG time specified

in milliseconds. The bias time range is +/-32.768 seconds.

Program Interface Library AR_SET_DEVICE_CONFIG

RAR-USB User's Manual 150

AR_SET_DEVICE_CONFIG

CEI_INT16 ar_set_device_config (CEI_INT16 board, CEI_INT16

channel, CEI_INT16 item, CEI_INT16 value)

This is the recommended routine to define the general device and ARINC

429 channel configuration attributes.

ARS_NORMAL Routine execution was successful.

ARS_INVARG The item argument value is invalid.

ARS_INVHARVAL The value or channel argument value is

invalid.

ARS_INVBOARD The board argument value is invalid.

ARS_FAILURE The specified device has not been initialized.

ARS_LOCK_ACCESS_TIMEOUT The shared data structure access

lock was not acquired.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

CEI_INT16 channel (input) Specifies which channel this routine

is to access. Valid range is 0 to one less than

the installed channel count for the respective

channel type.

CEI_INT16 item (input) Specifies the configuration attribute

to define:

ARU_RX_BITRATE receive rate for specified channel.

ARU_TX_BITRATE transmit rate for specified channel.

ARU_RX_PARITY receive parity for specified channel.

ARU_TX_PARITY transmit parity for specified channel.

ARU_RX_FIFO_ENABLE receive channel FIFO enable.

ARU_TX_FIFO_ENABLE transmit channel FIFO enable.

ARU_TX_DISABLE transmit channel transceiver disable.

ARU_TX_GAP_ERROR transmit message gap error enable.

ARU_TX_BIT_ERROR transmit message size error enable.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_SET_DEVICE_CONFIG

RAR-USB User's Manual 151

ARU_FAST_SLEW_RATE transmit channel slew rate select.

ARU_RECV_MODE receive channel internal wrap mode.

ARU_RX_MERGED_MODE board receive buffer mode select.

ARU_ACCESS_SNAPSHOT_BUFFER snapshot storage mode.

ARU_RX_TIMETAG_MODE timer/time-tag source and resolution.

ARU_DISCRETE_OUT sets a discrete output state.

ARU_IRIG_WRAP_ENABLE enables IRIG receiver internal wrap.

ARU_IRIG_INPUT_THRESHOLD sets the IRIG DAC threshold.

ARU_IRIG_ADJUST_THRESHOLD both invoke IRIG DAC

ARU_IRIG_QUICK_ADJUSTMENT auto-adjustment procedures.

ARU_IRIG_SET_BIAS assigns an offset to IRIG time.

ARU_TX_PLAYBACK_ENABLE controls transmit playback

CEI_INT16 value (input) the value to set the specified item.

If the requested item is ARU_RX_BITRATE (1) or ARU_TX_BITRATE

(2), valid value parameter selections are:

ARU_SPEED_HIGH (0) high rate (100Kbs)

ARU_SPEED_LOW (1) low rate (12.5Kbs)

Any other value assigns a non-standard bus speed, and is translated

as a divisor for the 16MHz device clock reference. This value and

the respective baud rate may be interpreted using the following

formulas:

 Baud Rate = 16,000,000 / (Value+2)

 Value = (16,000,000 / Desired Baud Rate) - 2

Any non-standard transmit bus speed value resulting in a baud rate below 15KHz will be
assigned to a slow slew rate. Any non-standard transmit bus speed value resulting in a
baud rate at or above 15KHz will be assigned to a fast slew rate.

If the requested item is ARU_RX_PARITY (3), valid value parameter

selections are:

AR_ON (7) receiver parity enabled

AR_OFF (8) receiver parity disabled

If the requested item is ARU_TX_PARITY (4), valid value parameter

selections are:

ARU_PARITY_ODD (0) odd transmitter parity

ARU_PARITY_EVEN (1) even transmitter parity

ARU_PARITY_NONE (2) transmitter parity disabled

If the requested item is ARU_RECV_MODE (5), valid value parameter

selections are:

AR_WRAP_ON (0) internal wrap enabled

AR_WRAP_OFF (1) internal wrap disabled

Note

Program Interface Library AR_SET_DEVICE_CONFIG

RAR-USB User's Manual 152

If the requested item is ARU_RX_FIFO_ENABLE (16) or

ARU_TX_FIFO_ENABLE (17), valid value parameter selections are:

AR_ON (7) Rx/Tx FIFO operation enabled

AR_OFF (8) Rx/Tx FIFO operation disabled

If the requested item is ARU_TX_DISABLE (10), valid value parameter

selections are:

AR_ON (7) external transmission disabled

AR_OFF (8) external transmission enabled

Disabling external transmission also causes the transmit pins to switch to a

tri-state condition.

If the requested item is ARU_TX_GAP_ERROR (8), valid value

parameter selections are:

AR_ON (7) transmit message gap error enabled

AR_OFF (8) transmit message gap error disabled

If the requested item is ARU_TX_BIT_ERROR (6), valid value parameter

selections are:

AR_LO (0) Low Bit Error operation is enabled

AR_HI (1) High Bit Error operation is enabled

AR_OFF (8) bit errors are disabled on this transmitter

If the requested item is ARU_FAST_SLEW_RATE (323), valid value

parameter selections are:

AR_ON (7) Fast Slew Rate selected (1.5 µsec rise time)

AR_OFF (8) Slow Slew Rate selected (10 µsec rise time)

If the requested item is ARU_RX_MERGED_MODE (18), valid value

parameter selections are:

AR_ON (7) board receive buffering mode set to merged

AR_OFF (8) board receive buffering mode set to individual

If the requested item is ARU_ACCESS_SNAPSHOT_BUFFER (38),

valid value parameter selections are:

ARU_LABEL_ONLY (0) message storage on a label basis

ARU_LABEL_WITH_SDI (1) message storage on a label/sdi basis

If the specified item is ARU_RX_TIMETAG_MODE (440), valid value

parameter selections represent the timer/time-tag source and resolution.

This item specifies the resolution of any timer-read or receive data time-

tag value obtained via the API, with value selections defined as follows:

AR_TIMETAG_EXT_IRIG_64BIT (0)

AR_TIMETAG_INT_USEC_64BIT (1)

AR_TIMETAG_INT_20USEC_32BIT (3)

AR_TIMETAG_INT_MSEC_32BIT (4)

Program Interface Library AR_SET_DEVICE_CONFIG

RAR-USB User's Manual 153

A value of AR_TIMETAG_EXT_IRIG_64BIT selects the source as

the external IRIG receiver, if connected; otherwise, if the IRIG

signal is not internally wrapped this selection would be invalid. .

All other values represent various timer/time-tag LSB resolution

values based on the internal RAR-USB device timer.

If the specified item is ARU_DISCRETE_OUT (12), valid value

parameter selections are:

AR_HI (1) Discrete Out set to 0 (FET OFF – tri-state)

AR_LO (0) Discrete Out set to 1 (FET ON – conduct to Ground)

(see paragraph Avionics Discrete I/O for the Discrete circuit

diagram)

If the specified item is ARU_IRIG_WRAP_ENABLE (441), valid value

parameter selections are:

AR_WRAP_ON (0) IRIG receiver internal wrap enabled

AR_WRAP_OFF (1) IRIG receiver internal wrap disabled

If the specified item is ARU_IRIG_INPUT_THRESHOLD (442), the

value parameter specifies the IRIG receiver threshold voltage in millivolts.

The items ARU_IRIG_ADJUST_THRESHOLD (443) and

ARU_IRIG_QUICK_ADJUSTMENT (444) invoke the IRIG DAC auto-

adjustment procedure. This procedure will determine the low and high

threshold values at which the incoming IRIG signal is present. It then

determines the best threshold level for the IRIG DAC, and returns the

value to the application in place of a returned status (failures are indicated

via return value of ARS_FAILURE). This execution of this adjustment

should require less than one second.

If the specified item is ARU_IRIG_SET_BIAS (446), the API assigns an

offset to the board IRIG time value calculation for any time and time-tag

retrieval.

If the specified item is ARU_TX_PLAYBACK_ENABLE (5018), the

API will assign the state of transmit playback feature on the RAR-USB

and mutually exclude the message scheduler feature:

AR_ON (7) transmit playback enabled, msg scheduling disabled

AR_OFF (8) transmit playback disabled, msg scheduling enabled

Program Interface Library AR_SET_573_CONFIG

RAR-USB User's Manual 154

AR_SET_573_CONFIG

CEI_INT16 ar_set_573_config (CEI_INT16 board, CEI_INT16 item,

CEI_INT32 value)

This routine provides the method for manipulating the ARINC 573/717

channel configuration attributes.

ARS_NORMAL Routine execution was successful.

ARS_INVARG The item argument value is invalid.

ARS_INVHARVAL The value argument value is invalid.

ARS_INVBOARD The board argument value is invalid.

ARS_FAILURE The specified device has not been initialized.

ARS_LOCK_ACCESS_TIMEOUT The shared data structure access

lock was not acquired.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

CEI_INT16 item (input) Specifies the configuration attribute

to define:

ARU_RECV_MODE receiver internal wrap.

ARU_RX_MERGED_MODE receiver merge mode enable.

ARU_RX_BITRATE receive channel bit rate.

ARU_RX_FIFO_ENABLE receive channel FIFO enable.

ARU_TX_BITRATE transmit channel bit rate.

ARU_TX_FIFO_ENABLE transmit channel FIFO enable.

ARU_573_RX_AUTO_DETECT data frame auto-detect enable.

ARU_573_RX_BPRZ_SELECT receiver BPRZ/HBP selection.

ARU_573_TX_BPRZ_SELECT transmit BPRZ encoding enable.

ARU_573_TX_HBP_SELECT transmit HBP encoding enable.

ARU_573_TX_SLEW_RATE transmit slew rate select.

ARU_573_SYNC_WORD1 receiver auto-detect sync word 1.

ARU_573_SYNC_WORD2 receiver auto-detect sync word 2.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_SET_573_CONFIG

RAR-USB User's Manual 155

ARU_573_SYNC_WORD3 receiver auto-detect sync word 3.

ARU_573_SYNC_WORD4 receiver auto-detect sync word 4.

CEI_INT32 value (input) The state to assign to the specified

configuration item:

If the requested item is ARU_RECV_MODE (5), valid value parameter

selections are:

AR_WRAP_ON (0) = internal wrap enabled

AR_WRAP_OFF (1) = internal wrap disabled

If the requested item is ARU_RX_MERGED_MODE (18), valid value

parameter selections are:

AR_ON (7) board receive buffering mode set to merged

AR_OFF (8) board receive buffering mode set to individual

If the requested item is ARU_RX_FIFO_ENABLE (16) or

ARU_TX_FIFO_ENABLE (17), valid value parameter selections are:

AR_ON (7) FIFO operation enabled

AR_OFF (8) FIFO operation disabled

If the configuration item is ARU_RX_BITRATE (1) or

ARU_TX_BITRATE (2), valid item values are one of the following (0-7):

ARU_573_RATE_SIZE_384_32 384 bps, 32 word sub-

frame

ARU_573_RATE_SIZE_768_64 768 bps, 64 word sub-

frame

ARU_573_RATE_SIZE_1536_128 1536 bps, 128 word sub-frame

ARU_573_RATE_SIZE_3072_256 3072 bps, 256 word sub-frame

ARU_573_RATE_SIZE_6144_512 6144 bps, 512 word sub-frame

ARU_573_RATE_SIZE_12288_1024 12288 bps, 1024 word sub-frame

ARU_573_RATE_SIZE_24576_2048 24576 bps, 2048 word sub-frame

ARU_573_RATE_SIZE_49152_4096 49152 bps, 4096 word sub-frame

If the configuration item is ARU_573_RX_AUTO_DETECT (301), valid

item values are one of the following:

AR_ON (7) ARINC 573/717 frame auto-detection enabled

AR_OFF (8) ARINC 573/717 frame auto-detection disabled

If the configuration item is ARU_573_RX_BPRZ_SELECT (302), valid

item values are one of the following:

AR_OFF (7) ARINC 573/717 HBP reception enabled

AR_ON (8) ARINC 573/717 BPRZ reception enabled

If the configuration item is ARU_573_TX_BPRZ_SELECT (313), valid

item values are one of the following:

Program Interface Library AR_SET_573_CONFIG

RAR-USB User's Manual 156

AR_OFF (7) ARINC 573/717 BPRZ transmission disabled

AR_ON (8) ARINC 573/717 BPRZ transmission enabled

If the configuration item is ARU_573_TX_HBP_SELECT (314), valid

item values are one of the following:

AR_OFF (7) ARINC 573/717 HBP transmission disabled

AR_ON (8) ARINC 573/717 HBP transmission enabled

If the configuration item is ARU_573_TX_SLEW_RATE (315), valid

item values are one of the following:

ARU_573_TX_SLEW_1PT5 (1) = fast (1.5µsec rise time)

ARU_573_TX_SLEW_10PT0 (0) = slow (10.0µsec rise time)

If the configuration item is ARU_573_SYNC_WORD1 (307),

ARU_573_SYNC_WORD2 (308), ARU_573_SYNC_WORD3 (309), or

ARU_573_SYNC_WORD4 (310), a valid item value is any 12-bit non-

zero value.

Program Interface Library AR_SET_MULTITHREAD_PROTECT

RAR-USB User's Manual 157

AR_SET_MULTITHREAD_PROTECT

CEI_INT16 ar_set_multithread_protect (CEI_INT16 board, CEI_INT16

state)

This routine controls the use of mutex/semaphore protection around all

global/shared API data structure accesses performed within the API

routines. This type of thread protection should be enabled for any multi-

threaded application or reentrant API usage.

ARS_NORMAL routine was successful.

ARS_INVARG An invalid state value was provided.

ARS_INVBOARD An invalid board value was provided.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

CEI_INT16 state (input) Multi-thread protection setting, valid

values are defined as follows:

 AR_ON (7) enables mutex/semaphore protection.

 AR_OFF (8) disables mutex/ semaphore protection.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_SET_ PRELOAD_CONFIG

RAR-USB User's Manual 158

AR_SET_ PRELOAD_CONFIG

CEI_INT16 ar_set_preload_config (CEI_INT16 board, CEI_INT16 item,

CEI_UINT32 value)

This routine is a legacy routine providing a method to induce API thread

protection when executing multi-threaded applications with your RAR-

USB device. Call this routine before calling AR_LOADSLV to update the

value of a particular pre-load API operational configuration setting. This

routine should not be called subsequent to any invocation of

AR_LOADSLV.

If item is ARU_CONCURRENCY_MODE, the value parameter specifies

the API concurrency mode. One of three modes may be selected:

AR_CONC_NONE or AR_CONC_MULTITHRD, (the AR-STREAM-

SW API does not support multi-process operation so the value parameter

option AR_CONC_MULTIPROC is not allowed).

The default concurrency mode, AR_CONC_NONE, provides no multi-

thread protection to the device and no multi-process API support. The user

application must ensure that only one thread is calling into the API at any

given time, and only a single process may interface with a particular board.

If AR_CONC_MULTITHRD concurrency mode is selected, thread

protection for access to global/shared data structures is provided internally

within the API. The user application may call into the API from multiple

threads, but all threads must belong to a single process. The main user

application thread should initialize the board with a call to AR_LOADSLV

before other threads attempt to call into the API. This mode is supported

on all operating systems supported by the RAR-USB software distribution.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An invalid board value was provided.

ARS_INVARG An invalid item or value parameter was

provided.

ARS_BOARD_MUTEX Creation of the Board Lock mechanism

failed.

ARS_NO_OS_SUPPORT The item selection not supported with the

host operating system.

Syntax

Description

Return Value

Program Interface Library AR_SET_ PRELOAD_CONFIG

RAR-USB User's Manual 159

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

CEI_INT16 item (input) Attribute about which to set

information, currently limited to a single

option, ARU_CONCURRENCY_MODE.

CEI_UINT32 value (input) the value to set the specified item.

AR_CONC_NONE no multi-thread or multi-process support

(default).

AR_CONC_MULTITHRD multi-thread concurrency mode (see

Description section for details).

Arguments

Program Interface Library AR_SET_RAW_MODE

RAR-USB User's Manual 160

AR_SET_RAW_MODE

CEI_INT16 ar_set_raw_mode (CEI_INT16 board, CEI_INT16 direction,

CEI_INT16 channel, CEI_INT16 control)

This routine is designed to provide compatibility with legacy ARINC 429

product APIs. AR_SET_DEVICE_CONFIG is the recommended routine

for manipulating the channel parity selection.

Each transmit and receive channel can be configured to run in raw mode,

where parity assignment and detection is disabled. When raw mode is

selected, every 32-bit ARINC word is transmitted or received with the

parity bit (msb) unchanged. This differs from a standard ARINC 429 data

transfer in which the message parity is always calculated. Raw mode is

typically used for older ARINC specifications such as ARINC 575.

ARS_NORMAL Routine execution was successful.

ARS_INVHARVAL An invalid channel parameter was provided.

ARS_INVARG An invalid direction or control parameter

was provided.

ARS_INVBOARD An invalid board value was provided.

ARS_FAILURE The specified device has not been initialized.

ARS_LOCK_ACCESS_TIMEOUT The shared data structure access

lock was not acquired.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

CEI_INT16 direction (input) The type of channel specified in the

channel argument (transmit or receive).

Valid values to select transmit channels are:

TRANSMIT_CHANNEL (0)

ARU_XMIT (34)

 Valid values to select receive channels are:

Syntax

Description

Return Value

Arguments

Program Interface Library AR_SET_RAW_MODE

RAR-USB User's Manual 161

RECEIVE_CHANNEL (1)

ARU_RECV (35)

CEI_INT16 channel (input) Specifies which channel this routine

is to access. Valid range is 0 to one less than

the installed channel count for the respective

channel type.

CEI_INT16 control (input) Enables or disables raw mode.

AR_ON (7) enable "raw" mode, parity

is disabled

AR_OFF (8) disable "raw" mode, parity

assignment and/or checking is enabled

Program Interface Library AR_SET_ STORAGE_MODE

RAR-USB User's Manual 162

AR_SET_ STORAGE_MODE

CEI_INT16 ar_set_storage_mode (CEI_INT16 board, CEI_INT16 mode)

The RAR-USB device stores received ARINC messages in a single large

merged circular buffer; however the AR-STREAM API will store

uploaded ARINC messages in either individual channel-indexed circular

buffers or in a single merged circular buffer. This routine allows you to

select the universal receive message buffer mode for all receive channels

on the device, as either BUFFERED or MERGED.

ARS_NORMAL Routine execution was successful.

ARS_INVARG An invalid mode parameter was provided.

ARS_INVBOARD An invalid board value was provided.

ARS_FAILURE The specified device has not been initialized.

ARS_LOCK_ACCESS_TIMEOUT The shared data structure access

lock was not acquired.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

CEI_INT16 mode (input) The type of receive data storage

mode to assign. Valid values are:

ARU_BUFFERED (0) store messages in individual

buffers accessed by channel number

ARU_MERGED (2) store messages in a merged

buffer

Syntax

Description

Return Value

Arguments

Program Interface Library AR_SET_TIME

RAR-USB User's Manual 163

AR_SET_TIME

CEI_INT16 ar_set_time (CEI_INT16 board, pAR_TIMETAG_TYPE

timeTag)

This routine assigns a value to the specified RAR-USB device internal

timer or IRIG time generator based on an application-supplied time format

and value.

ARS_NORMAL Routine execution was successful.

ARS_INVARG An invalid direction or control parameter

was provided.

ARS_INVBOARD An invalid timeTag.timeTagFormat

structure member value was provided.

ARS_FAILURE The specified device has not been initialized.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

pAR_TIMETAG_TYPE timeTag

 (input) The 64-bit device timer or 30-bit

IRIG time generator value to assign to the

respective hardware. Valid options for the

timeTagFormat structure member are:

 AR_TIMETAG_EXT_IRIG_64BIT (0)

 AR_TIMETAG_INT_USEC_64BIT (1)

 To assign a 30-bit IRIG Day/Time value, the

timeTag structure member should be defined

as a 30-bit value using the following bit field

format:

Syntax

Description

Return Value

Arguments

Program Interface Library AR_SET_TIME

RAR-USB User's Manual 164

29-28 27-24 23-20 19-18 17-14 13-11 10-7 6-4 3-0

hundreds
of days

tens of
days

days tens of
hours

hours tens of
minutes

minutes tens of
seconds

seconds

 To assign a 64-bit internal timer value, the

timeTag structure member should be defined

as a 64-bit 1 microsecond resolution time

value.

 The timeTagRef structure member is not

used by this routine.

 See the section titled Time-tag Structure Definition

for more information on the AR_TIMETAG_TYPE

data structure.

Program Interface Library AR_SLEEP

RAR-USB User's Manual 165

AR_SLEEP

CEI_VOID ar_sleep (CEI_UINT32 sleep_ms)

This routine suspends execution of the calling thread for the specified

number of milliseconds. The method used to implement this operation is

the C run-time library function Sleep. The accuracy of this operation is

dependent upon the accuracy of the underlying operating system call.

None

CEI_INT32 sleep_ms (input) Sleep duration, in milliseconds.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_SET_TIMERRATE

RAR-USB User's Manual 166

AR_SET_TIMERRATE

CEI_VOID ar_set_timerrate (CEI_INT16 board, CEI_INT16 rate)

This routine assigns the API internal timer reference resolution for

compatibility with applications based on the CEI-x20 product family

device timer and time-tag operation. When you invoke this routine, the

RAR-USB API sets the current timer usage and time-tag reporting mode to

the “CEI-x20 compatibility mode”. In this mode, all scheduled message

rate and start offset values and receive message time-stamp values are

referenced in terms of the resolution value assigned in the “rate” parameter

instead of the standard one millisecond (for scheduled message rate/offset)

or one microsecond (for receive message time-stamps).

The actual RAR-USB hardware device time-tag reference timer resolution

is not programmable; rather, it is a fixed one microsecond resolution.

The RAR-USB message scheduler minimum rate resolution is fixed at a

one millisecond resolution. As a result, any timer rate assignment having a

resolution that is not divisible by, or is less than, one millisecond, coupled

with an attempt to define a message scheduler entry rate or start offset

value that is not divisible by one millisecond results in that value being

assigned to the nearest 1 millisecond value below the supplied value.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

CEI_INT16 rate (input) Resolution of the RAR-USB-

emulated timer operation, specified as a tick-

timer value having a resolution of 250

nanoseconds.

Syntax

Description

Arguments

Program Interface Library AR_STOP

RAR-USB User's Manual 167

AR_STOP

CEI_INT16 ar_stop (CEI_INT16 board)

This routine disables all receive and scheduled transmit message

processing on the device.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD The board argument value is invalid.

ARS_FAILURE The specified device has not been initialized.

ARS_LOCK_ACCESS_TIMEOUT The shared data structure access

lock was not acquired.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_VERSION

RAR-USB User's Manual 168

AR_VERSION

CEI_VOID ar_version (pCEI_CHAR verstr)

This routine retrieves the current software version number of the AR-

STREAM API.

pCEI_CHAR verstr (output) String representation of the API

Version number consisting of up to 10

characters.

Syntax

Description

Arguments

Program Interface Library AR_WAIT

RAR-USB User's Manual 169

AR_WAIT

CEI_VOID ar_wait (CEI_FLOAT nsecs)

This routine delays the calling application by the specified number of

seconds. The method used to implement this operation is the C run-time

library function Sleep. The accuracy of this operation is dependent upon

the accuracy of the underlying operating system call.

CEI_FLOAT nsecs (input) Number of seconds to delay.

Syntax

Description

Arguments

Program Interface Library AR_WRITE_429_TRANSMIT_PLAYBACK

RAR-USB User's Manual 170

AR_WRITE_429_TRANSMIT_PLAYBACK

CEI_INT32 ar_write_429_transmit_playback (CEI_UINT32 device,

pCEI_UINT32 entryCount, PTR_AR_TX_PLBK_BFR_TYPE

playbackMsgSet, pCEI_UINT32 transmitStatus)

This routine writes a transmit playback message set to the specified device.

Once entries are written to the device, transmit playback must be enabled

via AR_SET_DEVICE_CONFIG using the item parameter value

ARU_TX_PLAYBACK_ENABLE. It is important to note this routine

does not validate the supplied transmit playback time value or transmit

channel in the playbackMsgSet structure array.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD The board argument value is invalid.

ARS_FAILURE The specified device has not been initialized.

ARS_LOCK_ACCESS_TIMEOUT The shared data structure access

lock was not acquired.

ARS_RWR_INSERT_REQ_FAIL The specified device failed a

communications packet initialization

request.

ARS_RWR_EXECUTE_FAIL The specified device failed a

communications block execution request.

CEI_INT16 board (input) Device to access. Valid range is 0-

127.

pCEI_UINT32 entryCount (input/output) As an input, specifies the

number of playback entries to write to the

playback buffer; as an output indicates how

many playback entries were written to the

playback buffer.

PTR_AR_TX_PLBK_BFR_TYPE playbackMsgSet (input) Reference to

the playback message set to write to the

playback buffer, defined as follows:

TIME_TAG_TYPE timeToTransmit – the playback time

at which this message should be transmitted, in

microseconds.

Syntax

Description

Arguments

Program Interface Library AR_WRITE_429_TRANSMIT_PLAYBACK

RAR-USB User's Manual 171

CEI_UINT32 transmitChannel – the transmit channel on

which to transmit this message, with a valid range from 0

to one less than the number of installed transmit channels.

CEI_UINT32 messageData – the 32-bit ARINC 429

message to transmit.

RAR-USB User's Manual 172

CHAPTER 7

RAR-USB Hardware

Overview

This chapter describes specific hardware features of the RAR-USB

product.

Power

The RAR-USB is a bus-powered USB device and requires no more than

500mA of USB supply current.

LEDs

The RAR-USB has four LED indicators, as shown in Figure 5,

and described below.

The POWER LED (PWR) is illuminated whenever the unit has

power.

The CONFIG LED (CONFIG) is illuminated when the driver has

initialized the unit and configured the on-board FPGA.

The TRANSMIT ACTIVE LED (ACTIVE) flashes on/off when

ARINC 429 messages are actively transmitting on any channel.

The RECEIVE ACTIVE LED (ACTIVE) flashes on/off when

ARINC 429 messages are actively being received on any channel.

RAR-USB Hardware Optional Mounting Kit

RAR-USB User's Manual 173

Figure 5. The RAR-USB LEDs

Optional Mounting Kit

An RAR-USB Mounting Kit is included with your RAR-USB device. It

contains two pairs of mounting brackets and two sets of four screws and

seals. The 4.5 mm seal should be used with the 18mm screw, while the

7.5mm seal is used with the 22mm screw.

To mount the brackets to the RAR-USB, first decide on the bracket

configuration that best suits your mounting requirements. Figure 6 shows

the bracket orientation and dimensions for the two mounting

configurations available.

Once you have determined your desired mounting configuration,

individually remove the screw cover located on the outer portion of each

of the two face plates and replace it with the desired size seal/screw and

the respective bracket. Brief assembly instructions are included within the

mounting kit.

RAR-USB Hardware Optional Mounting Kit

RAR-USB User's Manual 174

Figure 6. RAR-USB Mounting Options

RAR-USB Hardware IRIG DAC Register

RAR-USB User's Manual 175

IRIG DAC Register

The IRIG DAC Control Register determines the IRIG Receiver voltage

threshold. The optimal threshold for a DC level IRIG signal is the

midpoint between the upper and lower voltage levels of the IRIG signal.

An appropriate level for an amplitude modulated (AM) encoded IRIG

signal is at the 80% point between the upper and lower voltage levels of

the IRIG signal. The 80% value is acceptable for a DC signal and should

be used if the host application does not know which encoding (DC or AM)

is used. The desired IRIG DAC value can be determined using the

formula:

IRIG DAC value = (128 + ((256/3.3)*(4.99/22.1) * VIRIG_Threshold))

Where VIRIG_Threshold is the value in Volts for the IRIG receive threshold

relative to the input pins.

Avionics Discrete I/O

The RAR-USB provides eight bi-directional individually configurable

Avionics Discrete I/O channels, used for general avionics-level I/O

interfaces. The discrete outputs are low side n-channel FET switches

capable of sinking 500mA, while the inputs are single ended, protected

(50V max), with a logic threshold of approximately 2.0 V. The basic

circuit for a discrete I/O channel is shown below:

Figure 7. The RAR-USB Discrete I/O Circuit

Discrete Outputs

The discrete output channels have the following truth-table functionality:

+2.7 V

+

 -

discrete I/O pin

+3.3 V

10 KΩ

10 KΩ

 discrete_out

discrete_in

RAR-USB Hardware Avionics Discrete I/O

RAR-USB User's Manual 176

Discrete Out Discrete I/O pin

1 FET ON [conduct to Ground]

0 FET OFF [tri-state]

To assign Discrete Output states using the AR_SET_DEVICE_CONFIG

API call with the item parameter value ARU_DISCRETE_OUT, valid

value parameter selections are:

AR_LO Discrete Out set to 1 (FET ON – conduct to Ground)

AR_HI Discrete Out set to 0 (FET OFF – tri-state)

Discrete Inputs

When disconnected from any external signal, Discrete In reflects the value

of Discrete Out. When the FET is on, reading Discrete In should return a

“0”. When the FET is off, reading Discrete In generally returns a “1”

(because of the weak 22 KΩ pull-up resistor) but the load attached to the

discrete I/O pin must also be taken into consideration.

The discrete input channels have the following truth-table functionality:

Discrete I/O pin Discrete In

> 2.0 VDC 1

< 2.0 VDC 0

When a Discrete Input is connected to an external circuit, reading the state

via AR_GET_DEVICE_CONFIG invocation with the item parameter

ARU_DISCRETE_IN will result in one of the following return values:

AR_HI Discrete Input is 1

AR_LO Discrete Input is 0

	Contents
	Figures
	Tables
	The RAR-USB
	Overview
	Features
	Operating Systems Supported
	Specifications
	USB Interface
	Transmit Channels
	Receiver Channels
	Avionics Discrete Input and Output
	IRIG Input and Output
	Power Consumption
	Operating Temperature
	Weight

	I/0 Connections
	I/O Mating Connector
	RAR-USB Input /Output Connector Pin-out
	Optional RCONRARUSB-EC Adapter Cable
	RCONRARUSB-EC Adapter Cable Pin-out

	IRIG-B Signal Connections

	Software Installation
	Software Installation under Windows
	Device Driver Installation under Windows
	Driver Installation with Windows
	Multiple RAR-USB Device Installations
	Installation Verification under Windows

	Software Installation under Linux
	Building Applications under Linux
	Automatic Installation (Builds LSP and API)
	Manual Installation

	RAR-USB Product Features
	Overview
	Programmable Transmit Channel Tri-State Control
	ARINC 429 Protocol Support
	ARINC 573/717 Protocol Support
	RAR-USB Timers
	Receive Message Time-tagging and Timer Usage
	IRIG 64-Bit Time Reference
	Internal 64-Bit One Microsecond Time Reference
	Internal 32-Bit Twenty Microsecond Time Reference
	Internal 32-Bit One Millisecond Time Reference
	CEI-x20 Compatible Time Reference

	Receive Message Buffering
	Receive Buffer Entry Format
	ARINC 429/575 Data Format
	ARINC 573/717 Data Format

	ARINC 429 Receive Label Filtering
	Transmit Message Processing Methods
	ARINC 429 Burst Transmission
	ARINC 429/575 Data Format

	ARINC 717 Frame Transmission
	ARINC 573/717 Data Format

	ARINC 429 Periodic Message Scheduling
	Message Rate Skew

	ARINC 429 Transmit Playback Message Processing

	Avionics Discrete Inputs and Outputs

	BusTools/ARINC™ Data Bus Analyzer
	General Information
	BusTools/ARINC Demo Software

	AR-STREAM-SW Software Distribution
	Overview
	API Source Files
	SAR_API.C
	GEN_ARINC_API.C
	SAR_PROCESS_THREAD.C
	SAR_API.H
	SAR_TYPES.H
	SAR_ERROR.H
	SAR_HW.H
	CEI_TYPES.H
	SAR_OS_WIN.C
	SAR_OS_LNX.C
	SAR_API.DEF and SAR_API64.DEF

	Windows Libraries
	Time-tag Structure Definition
	Setting the Device Time

	Return Status Values
	Programming with the AR-STREAM API Interface
	Example Routines – Summary
	EXAMPLE_APPLICATION.C

	Dealing with Complex Message Scheduler Transmit Scenarios

	Program Interface Library
	Overview
	API Routines - Summary
	Initialization and Control Routines
	Device Control Routines
	Termination Routines
	Receive/Transmit Channel-level Configuration Routines
	Device-level Configuration Routines
	Receive Data Processing Routines
	Transmit Data Processing Routines
	Timer-related Routines
	Information and Status Routines
	Utility Routines

	AR_ASSIGN_SCHEDULER_START_OFFSETS
	AR_BLOCK_ON_DEVICE_UPDATE
	AR_BOARD_TEST
	AR_CLR_RX_COUNT
	AR_CLOSE
	AR_CONVERT_TIME_TO_STRING
	AR_DEFINE_MSG
	AR_DEFINE_MSG_BLOCK
	AR_ENH_LABEL_FILTER
	AR_EXECUTE_BIT
	AR_GET_573_FRAME
	AR_GET_429_MESSAGE
	AR_GETBLOCK
	AR_GETBLOCK_T
	AR_GET_BOARDNAME
	AR_GET_BOARDTYPE
	AR_GET_CONFIG
	AR_GET_DATA
	AR_GET_DATA_XT
	AR_GET_DEVICE_CONFIG
	AR_GET_573_CONFIG
	AR_GET_ERROR
	AR_GETFILTER
	AR_GET_IRIG_TIME_SET
	AR_GET_LABEL_FILTER
	AR_GET_LATEST
	AR_GET_LATEST_T
	AR_GETNEXT
	AR_GETNEXTT
	AR_GETNEXT_XT
	AR_GET_RX_CHANNEL_STATUS
	AR_GET_RX_COUNT
	AR_GET_SNAP_DATA
	AR_GET_SNAP_DATA_T
	AR_GET_STATUS
	AR_GET_STORAGE_MODE
	AR_GET_TIME
	AR_GET_TIMERCNTL
	AR_GETWORD
	AR_GETWORDT
	AR_GETWORD_XT
	AR_GO
	AR_HAS_ERROR_OCCURRED
	AR_INITIALIZE_API
	AR_INITIALIZE_DEVICE
	AR_LABEL_FILTER
	AR_LOADSLV
	AR_MODIFY_MSG
	AR_MODIFY_MSG_BLOCK
	AR_NUM_RCHANS
	AR_NUM_XCHANS
	AR_OPEN
	AR_PUT_429_MESSAGE
	AR_PUT_573_FRAME
	AR_PUTBLOCK
	AR_PUTBLOCK_MULTI_CHAN
	AR_PUTFILTER
	AR_PUTWORD
	AR_RESET
	AR_RESET_TIMERCNT
	AR_SET_CONFIG
	AR_SET_DEVICE_CONFIG
	AR_SET_573_CONFIG
	AR_SET_MULTITHREAD_PROTECT
	AR_SET_ PRELOAD_CONFIG
	AR_SET_RAW_MODE
	AR_SET_ STORAGE_MODE
	AR_SET_TIME
	AR_SLEEP
	AR_SET_TIMERRATE
	AR_STOP
	AR_VERSION
	AR_WAIT
	AR_WRITE_429_TRANSMIT_PLAYBACK

	RAR-USB Hardware
	Overview
	Power
	LEDs
	Optional Mounting Kit
	IRIG DAC Register
	Avionics Discrete I/O
	Discrete Outputs
	Discrete Inputs

