

CEI-x30

User’s Manual

Copyrights

Software Copyright  2004-2011 GE Intelligent Platforms Embedded Systems, Inc. All rights reserved.

User’s Manual Copyright © 2004-2011 GE Intelligent Platforms Embedded Systems, Inc.

This software product is copyrighted and all rights are reserved. The distribution and sale of this product
are intended for the use of the original purchaser only per the terms of the License Agreement.

This User’s Manual is copyrighted and all rights are reserved.

This document may not, in whole or part, be; copied; photocopied; reproduced; translated; reduced or
transferred to any electronic medium or machine-readable form without prior consent in writing from GE
Intelligent Platforms Embedded Systems, Inc.

Microsoft is a registered trademark of Microsoft Corporation.
Windows is a registered trademark of Microsoft Corporation.
VxWorks is a registered trademark of WindRiver Systems Corporation.
Integrity is a registered trademark of Green Hills Software Incorporated.
LabVIEW is a registered trademark of National Instruments Corporation.

GE Intelligent Platforms Embedded Systems, Inc. acknowledges the trademarks of other organizations for
their respective products or services mentioned in this document.

CEI-x30-SW User’s Manual (1500-048)

Software Revision: 3.10
Document Revision: 3.10
Document Date: 27 October 2011

GE Intelligent Platforms Embedded Systems, Inc.
6769 Hollister Ave.
Goleta, CA 93117
(805) 965-8000
(805) 963-9630 (fax)

support.avionics.ip@ge.com (email)
http://defense.ge-ip.com/products/family/avionics

CEI-x30 User's Manual i

Contents and Tables

Contents

Chapter 1 CEI-830 ... 1
Overview .. 1
CEI-830 Specifications .. 1

PMC/PCI Interface ... 2
Transmit Channels ... 2
Receiver Channels .. 2
Avionics Discrete Input and Output .. 2
IRIG Input and Output ... 2
Typical Power Consumption ... 3
Operating Temperature .. 3
Weight .. 3

PCI Memory Map .. 3
I/0 Connections .. 3

Input /Output Connectors ... 3
Input/Output Connector Pin-out .. 4
IRIG-B Signal Connections ... 7

Chapter 2 R830RX ... 8
Overview .. 8
R830RX Specifications ... 8

PMC/PCI Interface ... 9
Receiver Channels .. 9
IRIG Input and Output ... 9
Typical Power Consumption ... 9
Operating Temperature .. 9
Weight .. 9

PCI Memory Map .. 10
I/0 Connections .. 10

Mating Connectors ... 10
Input /Output Connector Pin-out ... 10

ii CEI-x30 User's Manual

Jumper Connections .. 12
IRIG-B Signal Connections ... 13

IRIG-B Generator Signal Connections .. 13
IRIG-B Receiver Signal Connections .. 13

Chapter 3 CEI-530 ... 14
Overview .. 14
CEI-530 Specifications .. 14

PCI Interface ... 15
Transmit Channels ... 15
Receiver Channels .. 15
Avionics Discrete Input and Output .. 15
IRIG Input and Output ... 16
Typical Power Consumption ... 16
Operating Temperature .. 16
Weight .. 16

PCI Memory Map .. 16
I/0 Connections .. 17

CEI-530 Outline Drawing .. 17
Mating Connectors ... 17
ARINC Input /Output Connector Pin-out .. 18
Discrete and IRIG Input/Output Connector Pin-out 19
IRIG-B Signal Connections ... 20

Chapter 4 RAR-PCIE ... 22
Overview .. 22
RAR-PCIE Specifications ... 22

PCI Express Interface ... 23
Transmit Channels ... 23
Receiver Channels .. 23
Avionics Discrete Input and Output .. 23
IRIG Input and Output ... 23
Typical Power Consumption ... 24
Operating Temperature .. 24
Weight .. 24

PCI Memory Map .. 24
I/0 Connections .. 25

RAR-PCIE Outline Drawing ... 25
Mating Connectors ... 25
ARINC Input/Output Connector Pin-out ... 26
Discrete and IRIG Input/Output Connector Pin-out 27
IRIG-B Signal Connections ... 28

CEI-x30 User's Manual iii

Chapter 5 CEI-430 ... 30
Overview .. 30
CEI-430 Specifications .. 30

PCI Interface ... 31
Transmit Channels ... 31
Receiver Channels .. 32
Avionics Discrete Input and Output .. 32
Differential Discrete Input and Output .. 32
IRIG Input and Output ... 32
Typical Power Consumption ... 32
Operating Temperature .. 33
Weight .. 33

PCI Memory Map .. 33
I/0 Connections .. 34

CEI-430 Outline Drawing .. 34
Input/Output Connectors .. 34
Input/Output Connector Pin-out .. 34
IRIG-B Signal Connections ... 37

Chapter 6 CEI-430A .. 38
Overview .. 38
CEI-430A Specifications ... 38

PCI Interface ... 39
Transmit Channels ... 39
Receiver Channels .. 40
Avionics Discrete Input and Output .. 40
IRIG Input and Output ... 40
Typical Power Consumption ... 40
Operating Temperature .. 40
Weight .. 40

PCI Memory Map .. 41
I/0 Connections .. 42

CEI-430A Outline Drawing ... 42
Input / Output Connectors .. 42
Input / Output Connector Pin-out .. 42
IRIG-B Signal Connections ... 45

Chapter 7 AMC-A30 .. 46
Overview .. 46
AMC-A30 Specifications .. 46

AMC/PCIe Interface .. 47
Transmit Channels ... 47
Receiver Channels .. 47

iv CEI-x30 User's Manual

Avionics Discrete Input and Output .. 47
IRIG Input and Output ... 47
Typical Power Consumption ... 48
Operating Temperature .. 48
Weight .. 48

PCI Memory Map .. 48
I/O Connections ... 48

Input/Output Connectors .. 48
Input/Output Connector Pin-out .. 49
IRIG-B Signal Connections ... 50

Chapter 8 RAR-EC .. 52
Overview .. 52
RAR-EC Specifications ... 52

ExpressCard Interface .. 53
Transmit Channels ... 53
Receiver Channels .. 53
Avionics Discrete Input and Output .. 53
IRIG Input and Output ... 53
Typical Power Consumption ... 53
Operating Temperature .. 54
Weight .. 54

PCI Memory Map .. 54
I/0 Connections .. 54

Mating Connectors ... 54
ARINC Input/Output Connector Pin-out ... 55
Transition Cable Pin-out .. 56
IRIG-B Signal Connections ... 57

Chapter 9 RAR-CPCI ... 58
Overview .. 58
RAR-CPCI Specifications ... 58

PCI Interface ... 59
Transmit Channels ... 59
Receiver Channels .. 59
Avionics Discrete Input and Output .. 59
IRIG Input and Output ... 60
Typical Power Consumption ... 60
Operating Temperature .. 60
Weight .. 60

PCI Memory Map .. 60
I/0 Connections .. 61

RAR-CPCI Outline Drawing ... 61

CEI-x30 User's Manual v

Mating Connectors ... 61
ARINC Input/Output Connector Pin-out ... 61
IRIG-B Signal Connections ... 64

Chapter 10 Windows Installation .. 65
Software Installation for Windows ... 65
Hardware Installation .. 66

Hardware Installation with Windows 7/Vista/XP/2000/9x 66
Hardware Installation with Windows NT 4.0 .. 67
Installation Verification ... 67

Chapter 11 VxWorks Installation ... 68
Overview .. 68
Building a VxWorks Image ... 68

BIOS Initialization ... 70
Using the Sample Program .. 70
Building the API and Sample Program with Tornado 70
Target-specific Compiler Directives ... 74

Chapter 12 Linux Installation ... 76
Overview .. 76
Software Installation .. 76
Building Applications .. 77

Automatic Installation (Builds LSP and API) 77
Manual Installation ... 78

Linux Driver Operation ... 78
Troubleshooting ... 79

Useful Linux system utilities ... 79
Compilation Errors ... 79
Run-time Errors .. 79

Chapter 13 Integrity® Support ... 81
Introduction .. 81
Integrity Installation... 81

Integrity PCI Driver Installation .. 82
Building Integrity Applications ... 82
Building the CEI-x30 API with Multi ... 85

Chapter 14 CEI-x30 Features ... 87
Overview .. 87
Enhanced CEI-x30 Interface ... 87
ARINC 429 Protocol Support ... 87

ARINC 429 Transmit Tri-state Support .. 88

vi CEI-x30 User's Manual

ARINC 573/717 Protocol Support .. 88
CEI-x30 Timers ... 89
Receive Message Time-tagging and Timer Usage 90

IRIG 64-Bit Time Reference ... 90
Internal 64-Bit One Microsecond Time Reference 91
Internal 32-Bit Twenty Microsecond Time Reference 91
Internal 32-Bit One Millisecond Time Reference 91
CEI-x20 Compatible Time Reference ... 91

Receive Message Buffering Methods ... 92
Individual Circular Buffer Storage .. 92
Merged Circular Buffer Storage .. 92
Snapshot Buffer Storage .. 92

Interrupts and Triggers .. 93
ARINC 429 Receive Label Filtering and Interrupt Event 94
ARINC 429 Periodic Message Scheduling ... 95

Message Rate Skew.. 95

Chapter 15 BusTools/ARINC™ Data Bus Analyzer 98
General Information .. 98
BusTools/ARINC Demo Software .. 98

Chapter 16 Program Interface Library .. 99
Overview .. 99
API Source Files .. 99

CDEV_API.C ... 99
CDEV_API.H ... 99
CDEV_GLB.H ... 100
AR_ERROR.H ... 100
CDEV_HW.H .. 100
CEI_TYPES.H ... 100
CDEV_WIN.C ... 100
CDEV_VXW.C .. 100
CDEV_LNX.C ... 100
CDEV_INT.C ... 101
CDEV_LRT.C .. 101
CDEV_FW.H - Firmware Load Files .. 101

Windows Libraries .. 102
Time-tag Structure Definition ... 102

Setting the Device Time ... 103
Return Status Values ... 104
Programming with the CEI-x30 API Interface ... 105
Example Routines – Summary .. 106

Tst_cnfg.c ... 106

CEI-x30 User's Manual vii

Multiprocess_test.c ... 107
Visual Basic ... 108

Working with Unsigned Integers in Visual Basic 108
API Routines - Summary .. 109

Initialization and Control Routines .. 109
Device Control Routines .. 109
Termination Routines ... 110
Receive/Transmit Channel-level Configuration Routines 110
Device-level Configuration Routines .. 111
Receive Data Processing Routines .. 111
Transmit Data Processing Routines ... 112
Timer-related Routines ... 113
Information and Status Routines .. 113
Utility Routines .. 113

AR_BOARD_TEST .. 115
AR_BYPASS_WRAP_TEST ... 116
AR_CLR_RX_COUNT .. 117
AR_CLOSE ... 118
AR_CONVERT_TIME_TO_STRING .. 119
AR_DEFINE_MSG... 120
AR_DEFINE_MSG_BLOCK ... 121
AR_ENH_LABEL_FILTER .. 123

Label Filtering .. 123
Interrupt Generation ... 123

AR_EXECUTE_BIT ... 125
AR_GET_573_FRAME .. 127
AR_GET_429_MESSAGE ... 129
AR_GET_BASE_ADDR .. 131
AR_GETBLOCK .. 132
AR_GETBLOCK_T .. 133
AR_GET_BOARDNAME .. 135
AR_GET_BOARDTYPE ... 136
AR_GET_CONFIG ... 137
AR_GET_DATA ... 141
AR_GET_DATA_XT ... 143
AR_GET_DEVICE_CONFIG .. 144
AR_GET_573_CONFIG ... 150
AR_GET_ERROR .. 153
AR_GETFILTER .. 154
AR_GET_LABEL_FILTER ... 156
AR_GET_LATEST ... 157
AR_GET_LATEST_T .. 158
AR_GETNEXT ... 159

viii CEI-x30 User's Manual

AR_GETNEXTT ... 160
AR_GETNEXT_XT .. 161
AR_GET_RX_COUNT .. 162
AR_GET_SNAP_DATA .. 163
AR_GET_STATUS... 164
AR_GET_STORAGE_MODE ... 165
AR_GET_TIME .. 166
AR_GET_TIMERCNTL ... 168
AR_GETWORD ... 169
AR_GETWORDT ... 170
AR_GETWORD_XT .. 172
AR_GO .. 173
AR_HW_INTERRUPT_BUFFER_READ .. 174
AR_INTERRUPT_QUEUE_READ .. 175
AR_INITIALIZE_API .. 176
AR_INITIALIZE_DEVICE .. 177
AR_HW_INTERRUPT_BUFFER_READ .. 178
AR_INTERRUPT_QUEUE_READ .. 179
AR_LABEL_FILTER ... 180
AR_LOADSLV ... 181
AR_MODIFY_MSG ... 183
AR_MODIFY_MSG_BLOCK ... 184
AR_NUM_RCHANS .. 186
AR_NUM_XCHANS .. 187
AR_PUT_429_MESSAGE ... 188
AR_PUT_573_FRAME .. 189
AR_PUTBLOCK .. 190
AR_PUTBLOCK_MULTI_CHAN .. 191
AR_PUTFILTER .. 193
AR_PUTWORD .. 195
AR_QUERY_DEVICE ... 196
AR_RESET ... 197
AR_RESET_TIMERCNT... 198
AR_SET_CONFIG ... 199
AR_SET_DEVICE_CONFIG .. 204
AR_SET_573_CONFIG ... 209
AR_SET_MULTITHREAD_PROTECT ... 212
AR_SET_ISR_FUNCTION .. 213
AR_SET_ PRELOAD_CONFIG .. 214
AR_SET_RAW_MODE ... 216
AR_SET_ STORAGE_MODE ... 218
AR_SET_TIME ... 219
AR_SLEEP .. 221

CEI-x30 User's Manual ix

AR_SET_TIMERRATE ... 222
AR_STOP .. 223
AR_VERSION .. 224
AR_WAIT ... 225

Chapter 17 CEI-x30 Hardware Interface 226
Overview .. 226
PCI Configuration Space ... 227

PCI Device Identifiers and Resources ... 227
Host Memory Map .. 229
Device Interface Register Set (Common Memory) 230

Global Enable Register .. 230
DAC Control Register .. 231
Timer Registers .. 231
Update IRIG Generator Time Register .. 232
IRIG Sample Time Register ... 232
IRIG Sample Timestamp Registers ... 232
SRAM Access Address Register ... 233
SRAM Access Data Register ... 233
General Input Registers .. 233
Interrupt Queue Register .. 234
Channel Statistics Table ... 234
Channel Register Set .. 234
Channel Status Register ... 235
Channel Configuration Registers ... 236
Channel Configuration Register 1 – ARINC 429 Receive 236
Channel Configuration Register 1 – ARINC 573 Receive 237
Channel Configuration Register 2 – ARINC 573 Receive 239
Channel Configuration Register 3 – ARINC 573 Receive 239
Channel Configuration Register 1 – ARINC 429 Transmit 239
Channel Configuration Register 1 – ARINC 573 Transmit 241
Channel Configuration Register 1 – Discrete or Digital Output 243
Channel Configuration Register 1 – Differential Output 243
Channel Buffer Words ... 243
Channel Buffer Word 1 - Receive ... 244
Channel Buffer Word 2 - Receive ... 244
Channel Buffer Word 3 – Receive ... 244
Channel Buffer Word 4 – Receive ... 244
Channel Buffer Word 1, 2, and 3 - Transmit 245
Channel Buffer Word 4 - Transmit .. 246
Interrupt Queue .. 246
Message Scheduler Table... 247
Snapshot Buffer .. 248

x CEI-x30 User's Manual

SRAM Memory Organization ... 249
Label Filter Table ... 249
Snapshot Buffer .. 250
Individual Channel Buffers .. 250

ARINC 429 Receive Threshold .. 250
Avionics Discrete I/O .. 251
Differential Discrete I/O .. 251
Hardware Channel Assignments ... 252

CEI-x30 User's Manual xi

Figures
Figure 1. CEI-830 .. 1
Figure 2. 68-pin Front-Panel Receptacle Connector 6
Figure 3. R830RX ... 8
Figure 4. P1 68-pin Front-Panel (Bezel) Connector – View Facing
Connector Pins ... 11
Figure 5. CEI-530 .. 14
Figure 6. CEI-530 Outline Drawing .. 17
Figure 7. 68-pin Front-Panel (Bezel) Connector – View Facing Connector
Pins ... 18
Figure 8. 50-pin IDC-50 I/O Connector – View Facing Connector Pins ... 19
Figure 9. RAR-PCIE ... 22
Figure 10. RAR-PCIE Outline Drawing ... 25
Figure 11. 68-pin Front-Panel (Bezel) Connector – View Facing Connector
Pins ... 26
Figure 12. 50-pin IDC-50 I/O Connector – View Facing Connector Pins . 27
Figure 13. CEI-430 .. 30
Figure 14. CEI-430 Outline Drawing.. 34
Figure 15. P1 50-pin IDC ARINC Interface Connector – View Facing
Connector Pins ... 35
Figure 16. P2 40-pin IDC I/O Connector – View Facing Connector Pins . 36
Figure 17. CEI-430A ... 38
Figure 18. CEI-430A Outline Drawing ... 42
Figure 19. P1 50-pin IDC ARINC Interface Connector – View Facing
Connector Pins ... 43
Figure 20. P2 40-pin IDC I/O Connector – View Facing Connector Pins . 44
Figure 21. AMC-A30 .. 46
Figure 22. RAR-EC ... 52
Figure 23. P1 Connector – View Facing Connector Pins 56
Figure 24. RAR-CPCI ... 58
Figure 25. RAR-CPCI Outline Drawing ... 61
Figure 26. P1/P2 50-pin Front-Panel (Bezel) Connectors – AMP Champ
0.8 mm Receptacle Connectors, View Facing Connector Pins 62
Figure 27. Integrity libbsp.gpj with cei_int_pci_drv.c Added 82
Figure 28. Example CEI-830 Integrity Application Project Setup 83
Figure 29. Example CEI-830 Integrity Application Project Option 83
Figure 30. Adding a MemoryPoolSize Entry ... 84
Figure 31. Modifying the Value for the DefaultStartIt Attribute 84
Figure 32. Example CEI-830 Integrity Library Project Setup 85
Figure 33. Example CEI-830 Integrity Library Project Options 86

xii CEI-x30 User's Manual

Tables
Table 1. Power Consumption .. 3
Table 2. CEI-830 PCI Memory Map .. 3
Table 3. Input/Output Connectors ... 4
Table 4. CEI-830 I/O Connections .. 5
Table 5. CEI-830-xxxx-J I/O Connection for ARINC 573/717 6
Table 6. CEI-830-xxxxN I/O Connection for Discrete I/O 6
Table 7. IRIG Signal Formats ... 7
Table 8. Power Consumption .. 9
Table 9. R830RX PCI Memory Map .. 10
Table 10. P1 Input/Output Connector ... 10
Table 11. R830RX ARINC I/O Connections ... 11
Table 12. IRIG Signal Formats Supported .. 13
Table 13. Power Consumption .. 16
Table 14. CEI-530 PCI Memory Map .. 16
Table 15. P2 Input/Output Connector ... 17
Table 16. P3 Input/Output Connector ... 17
Table 17. CEI-530 Front Panel ARINC I/O Connections 18
Table 18. CEI-530 IDC-50 I/O Connections .. 20
Table 19. IRIG Signal Connections .. 20
Table 20. Power Consumption .. 24
Table 21. RAR-PCIE PCI Memory Map .. 24
Table 22. P2 Input/Output Connector ... 25
Table 23. P3 Input/Output Connector ... 25
Table 24. RAR-PCIE Front Panel ARINC I/O Connections 26
Table 25. RAR-PCIE IDC-50 I/O Connections .. 28
Table 26. IRIG Signal Connections .. 28
Table 27. PCI Stack Location Shunts ... 31
Table 28. Power Consumption .. 32
Table 29. CEI-430 PCI Memory Map .. 33
Table 30. CEI-430 Input/Output Connectors .. 34
Table 31. CEI-430 P1 ARINC I/O Connections ... 35
Table 32. CEI-430 P2 I/O Connections .. 36
Table 33. IRIG Signal Connections .. 37
Table 34. PCI Stack Location Shunts ... 39
Table 35. Power Consumption .. 40
Table 36. CEI-430A PCI Memory Map ... 41
Table 37. CEI-430 Input/Output Connectors .. 42
Table 38. CEI-430A P1 ARINC I/O Connections 43
Table 39. CEI-430A P2 I/O Connections ... 44
Table 40. IRIG Signal Connections .. 45
Table 41. Payload Power Consumption .. 48

CEI-x30 User's Manual xiii

Table 42. AMC-A30 PCI Memory Map ... 48
Table 43. Input/Output Connectors ... 49
Table 44. AMC-A30 I/O Connections .. 49
Table 45. AMC-A30-xxxx-J I/O Connection for ARINC 573/717 50
Table 46. IRIG Signal Formats ... 51
Table 47. Power Consumption .. 53
Table 48. RAR-EC PCI Memory Map ... 54
Table 49. P1 Input/Output Connector ... 54
Table 50. RAR-EC P1 ARINC I/O Connections .. 55
Table 51. RAR-EC-XX Transition Cable [37-Pin D-Subminiature]
Connections ... 56
Table 52. IRIG Signal Connections .. 57
Table 53. Power Consumption .. 60
Table 54. RAR-CPCI PCI Memory Map .. 60
Table 55. P1/P2 Input/Output Connectors .. 61
Table 56. RAR-CPCI P1/P2 Front Panel I/O Connections 62
Table 57. RAR-CPCI Rear Panel Input/Output Connector Definition 63
Table 58. IRIG Signal Connections .. 64
Table 59. CEI-x30 PCI Configuration Space ... 227
Table 60. CEI-x30 Host Memory Map ... 229

CEI-x30 User's Manual 1

CHAPTER 1

CEI-830

Overview
The CEI-830 card is a multiple-channel ARINC interface available in
several configurations. When configured as the CEI-830-1616, this
product includes thirty-two ARINC 429 channels, (sixteen receivers and
sixteen transmitters), in a PMC form-factor. Configurations are available
supporting various ARINC 429 channel counts, ARINC 573/717, Avionics
Discrete I/O, and IRIG time synchronization. A variety of bus adapter
configurations are also available, supporting both front and rear-I/O access
for PCI, PCI Express, and CompactPCI platforms.

CEI-830 Specifications

Figure 1. CEI-830

CEI-830 Specifications CEI-830

2 CEI-x30 User's Manual

The CEI-830 is a multiple channel, multiple protocol interface built to the
PMC standard IEEE-P1386.1.

PMC/PCI Interface
 Standard single-width CMC module per IEEE-P1386.1 draft

standard

 +5V and +3.3V PCI signaling compatibility and universal keying

 66 MHz, 32 bit PCI operation

Transmit Channels
 Up to sixteen independent differential serial transmit channels

 Automatic parity generation

 2048 message transmit buffer for each channel

 Baud rate/slew rate software-programmable for each channel

 1024 entry message table supporting scheduled message
transmission for all channels

Receiver Channels
 Up to sixteen independent, differential receive channels

 2048 message buffered mode receive FIFO buffer for each channel.

 16384 message merged mode receive FIFO buffer

 Label/SDI message independent snapshot storage for each channel

 Independent merged/individual receive FIFO buffer operation.

 64-bit, 1 µsec time-tag is stored with each data element in the FIFO

 Parity error detection

Avionics Discrete Input and Output
 Four dedicated avionics-level discrete channels

 Output may switch to ground up to 500mA

 Fixed input threshold of 2.7 +/- 0.2 volts

IRIG Input and Output
 IRIG Time-code receiver and transmitter

CEI-830 PCI Memory Map

CEI-x30 User's Manual 3

Typical Power Consumption

Table 1. Power Consumption

+3.3V +5V +12V -12V

500 mA 50 mA 100 mA
(no TX Loads)

100 mA
(no TX Loads)

Operating Temperature
 -40 to +85 C

Weight
3.6 ounces

PCI Memory Map
The following table summarizes the PCI memory map interface definition
for the CEI-830.

Table 2. CEI-830 PCI Memory Map

Region Type Size Description
configuration configuration 64 bytes PCI configuration space

PCI BAR0 memory 512 bytes PCI9056 memory-mapped
local configuration registers

PCI BAR1 I/O 256 bytes
PCI9056 I/O-mapped local
configuration registers,
unused

PCI BAR2 memory 512K bytes CEI-830 host interface
PCI BAR3 n/a 0 not used
PCI BAR4 n/a 0 not used
PCI BAR5 n/a 0 not used

I/0 Connections

Input /Output Connectors
At publication of this document, the following mating connector was
compatible with the 68-pin SCSI connector used on the CEI-830. GE

I/0 Connections CEI-830

4 CEI-x30 User's Manual

Intelligent Platforms Embedded Systems supplies the adapter cable
CONSCSI3-6 for this connection.

Table 3. Input/Output Connectors

Part No. Description Manufacturer
1-5750913-7 Front Panel 68 pin SCSI-3 AMP/Tyco

Input/Output Connector Pin-out
The different CEI-830 product configurations have specific channel pin-
out definitions based on the number of channels and protocols installed.
Table 4 describes both the 68-pin front panel and P14 mezzanine I/O
connector pin-out for the ARINC 429 version of the CEI-830 module. The
exact ARINC 429 channel pin-out depends on the number of receivers and
transmitters configured on your CEI-830. Table 6 describes the pin-out
differences for the -J version of the CEI-830; these pins support ARINC
573/717 protocols on the pins used by the upper channels on non-J
configurations. Table 6 describes the pin-out differences for the N
configuration, supporting Discrete I/O on the pins assigned to the upper
channels of the non-N configurations.

Additionally, the P14 mezzanine I/O connector routes the first fifteen
ARINC 429 transmit and receive channels, the J configuration ARINC
573/717 channels, and up to two optional Discrete I/O channels.

To externally wrap ARINC signals, connect the transmitter signals to the
respective receiver signals, TXnA to RXnA and TXnB to RXnB.

Figure 2 shows the view facing the receptacles of a 68-pin Front-Panel
Receptacle Connector (SCSI-3-compatible with Rails and Latch Blocks).

CEI-830 I/0 Connections

CEI-x30 User's Manual 5

Table 4. CEI-830 I/O Connections

Signal
Front
Panel
(P1)

P14 I/O
Connector Signal

Front
Panel
(P1)

P14 I/O
Connector

RX1A 1 63 RX1B 35 64
RX2A 2 61 RX2B 36 62
RX3A 3 59 RX3B 37 60
RX4A 4 57 RX4B 38 58
RX5A 5 55 RX5B 39 56
RX6A 6 53 RX6B 40 54
RX7A 7 51 RX7B 41 52
RX8A 8 49 RX8B 42 50
RX9A 9 47 RX9B 43 48
RX10A 10 45 RX10B 44 46
RX11A 11 43 RX11B 45 44
RX12A 12 41 RX12B 46 42
RX13A 13 39 RX13B 47 40
RX14A 14 37 RX14B 48 38
RX15A 15 35 RX15B 49 36
RX16A 16 N/A RX16B 50 N/A
TX1A 17 33 TX1B 51 34
TX2A 18 31 TX2B 52 32
TX3A 19 29 TX3B 53 30
TX4A 20 27 TX4B 54 28
TX5A 21 25 TX5B 55 26
TX6A 22 23 TX6B 56 24
TX7A 23 21 TX7B 57 22
TX8A 24 19 TX8B 58 20
TX9A 25 17 TX9B 59 18
TX10A 26 15 TX10B 60 16
TX11A 27 13 TX11B 61 14
TX12A 28 11 TX12B 62 12
TX13A 29 9 TX13B 63 10
TX14A 30 7 TX14B 64 8
TX15A 31 5 TX15B 65 6
TX16A 32 N/A TX16B 66 N/A
IRIGRX+ 33 3 IRIGRX- 67 4
IRIGTX 34 1 Gnd (note) 68 2

I/0 Connections CEI-830

6 CEI-x30 User's Manual

The ground pins are provided as Discrete I/O return lines or for shielding,
as necessary.

Table 5. CEI-830-xxxx-J I/O Connection for ARINC 573/717

Signal
Front
Panel
(P1)

P14 I/O
Connector Signal

Front
Panel
(P1)

P14 I/O
Connector

ARINC 717
BPRZ RXA

14 37 ARINC 717
BPRZ RXB

48 38

ARINC 717
HBP RXA

15 35 ARINC 717
HBP RXB

49 36

Reserved 16 N/A Reserved 50 N/A
… … … … … …
ARINC 717
TXA (note)

30 7 ARINC 717
BPRZ TXB

64 8

ARINC 717
HBP TXB

31 5 Reserved 65 6

Reserved 32 N/A Reserved 66 N/A

The ARINC 573/717 TXA (High) signal is supported on this pin for both
the BPRZ and HBP protocols. The selected protocol processed is based
on the selection of the ARINC 717 HBP and BPRZ Encoding bits in the
respective Transmit Channel Configuration register. See the API routine
AR_SET_573_CONFIG for the method to define the ARINC 573/717
active encoding selection for this output pin.

Table 6. CEI-830-xxxxN I/O Connection for Discrete I/O

Signal
Front
Panel
(P1)

P14 I/O
Connector Signal

Front
Panel
(P1)

P14 I/O
Connector

Discrete
Input 1

15 35 Discrete
Input 2

49 36

Discrete
Input 3

16 N/A Discrete
Input 4

50 N/A

… … … … … …
Discrete
Output 1

31 5 Discrete
Output 2

65 6

Discrete
Output 3

32 N/A Discrete
Output 4

66 N/A

Figure 2. 68-pin Front-Panel Receptacle Connector

Note:

Note:

CEI-830 I/0 Connections

CEI-x30 User's Manual 7

IRIG-B Signal Connections
IRIG-B time (AM or DC/TTL) may be received via signals IRIGRX+ and
IRIGRX- (see Table 5). The following IRIG formats are accepted.

Table 7. IRIG Signal Formats

Format Modulation
Frequency

Frequency/
Resolution

Coded
Expressions

B 0, 1 0, 2 0, 1, 2, 3

Upon completion of the program load, the CEI-830 initiates IRIG B002
(DC/TTL) transmission from the onboard IRIG encoder via the IRIGTX
signal (see Table 5). The IRIGTX signal can source/sink 16 mA at valid
TTL levels.

To externally wrap the IRIG generator to the IRIG receiver, connect the
IRIGTX signal to IRIGRX+ input, and connect the IRIGRX- input to
Ground.

CEI-x30 User's Manual 8

CHAPTER 2

R830RX

Overview
The R830RX card is a receive-only version of the CEI-830 ARINC
interface, in a PMC form-factor. Configurations are available supporting
various ARINC 429 channel counts and IRIG time synchronization. A
variety of bus adapter configurations are also available, supporting both
front and rear-I/O access for PCI, PCI Express, and CompactPCI
platforms.

R830RX Specifications

Figure 3. R830RX

The R830RX is a multiple channel ARINC receive-only interface built to
the PMC standard IEEE-P1386.1.

R830RX R830RX Specifications

CEI-x30 User's Manual 9

PMC/PCI Interface
 Standard single-width CMC module per IEEE-P1386.1 draft

standard

 +5V and +3.3V PCI signaling compatibility and universal keying

 66 MHz, 32 bit PCI operation

Receiver Channels
 Up to thirty-two independent, differential receive channels

 1024 message buffered mode receive FIFO buffer for each channel

 16384 message merged mode receive FIFO buffer

 Label/SDI message independent snapshot storage for each channel

 Independent merged/individual receive FIFO buffer operation

 64-bit, 1 µsec time-tag is stored with each data element in the FIFO

 Parity error detection

IRIG Input and Output
 IRIG Time-code receiver and transmitter

Typical Power Consumption

Table 8. Power Consumption

+3.3V 5V
250mA 10mA

Operating Temperature
 -40 to +85 C

Weight
3.6 ounces, maximum

PCI Memory Map R830RX

10 CEI-x30 User's Manual

PCI Memory Map
The following table summarizes the PCI memory map interface definition
for the R830RX.

Table 9. R830RX PCI Memory Map

Region Type Size Description
configuration configuration 64 bytes PCI configuration space

PCI BAR0 memory 512 bytes PCI9056 memory-mapped
local configuration registers

PCI BAR1 I/O 256 bytes
PCI9056 I/O-mapped local
configuration registers,
unused

PCI BAR2 memory 512K bytes R830RX host interface
PCI BAR3 unused 0 not used
PCI BAR4 unused 0 not used
PCI BAR5 unused 0 not used

I/0 Connections

Mating Connectors
At publication of this document, the following mating connector was
compatible with the 68-pin (P1) SCSI connector provided on the R830RX
front panel (bezel). GE Intelligent Platforms Embedded Systems supplies
the adapter cable CONSCSI3-6 for this connection.

Table 10. P1 Input/Output Connector

Connector Part No Description Manufacturer
P1 1-5750913-7 Front Panel 68 pin SCSI-3 AMP/Tyco

Input /Output Connector Pin-out
The following table describes both the 68-pin front panel and P14
mezzanine I/O connector pin-out for the R830RX. The exact ARINC 429
channel pin-out depends on the number of receivers configured on your
R830RX. The P14 mezzanine I/O connector routes all thirty-two ARINC
429 receive channels. The figure below shows the view facing the
receptacles of a 68-pin Front-Panel Receptacle Connector (SCSI-3-
compatible with Rails and Latch Blocks).

R830RX I/0 Connections

CEI-x30 User's Manual 11

Figure 4. P1 68-pin Front-Panel (Bezel) Connector – View Facing Connector Pins

Table 11. R830RX ARINC I/O Connections

Signal
Front
Panel
(P1)

P14 I/O
Connector Signal

Front
Panel
(P1)

P14 I/O
Connector

RX1A 1 2 RX1B 35 1
RX2A 2 4 RX2B 36 3
RX3A 3 6 RX3B 37 5
RX4A 4 8 RX4B 38 7
RX5A 5 10 RX5B 39 9
RX6A 6 12 RX6B 40 11
RX7A 7 14 RX7B 41 13
RX8A 8 16 RX8B 42 15
RX9A 9 18 RX9B 43 17
RX10A 10 20 RX10B 44 19
RX11A 11 22 RX11B 45 21
RX12A 12 24 RX12B 46 23
RX13A 13 26 RX13B 47 25
RX14A 14 28 RX14B 48 27
RX15A 15 30 RX15B 49 29
RX16A 16 32 RX16B 50 31
RX17A 17 34 RX17B 51 33
RX18A 18 36 RX18B 52 35
RX19A 19 38 RX19B 53 37
RX20A 20 40 RX20B 54 39
RX21A 21 42 RX21B 55 41
RX22A 22 44 RX22B 56 43
RX23A 23 46 RX23B 57 45
RX24A 24 48 RX24B 58 47
RX25A 25 50 RX25B 59 49
RX26A 26 52 RX26B 60 51
RX27A 27 54 RX27B 61 53
RX28A 28 56 RX28B 62 55
RX29A 29 58 RX29B 63 57
RX30A 30 60 RX30B 64 59
RX31A 31 62 RX31B 65 61

Jumper Connections R830RX

12 CEI-x30 User's Manual

Signal
Front
Panel
(P1)

P14 I/O
Connector Signal

Front
Panel
(P1)

P14 I/O
Connector

RX32A
TXA 1
IRIGTX+ 2

IRIGRX+ 3

32 64 RX32B
TXB 1
IRIGTX- 2

IRIGRX- 3

66 63

IRIGRX+ 33 N/A IRIGRX- 67 N/A
Gnd 4 34 N/A Gnd 4 68 N/A

1. When the jumper pin pairs J4 and J5 are shorted and Bit 4 of the
Global Enable Register is set low (0), the on-board transmitter
signals TXA and TXB will be enabled and physically shorted to these
pins.

2. When the jumper pin pairs for J4 and J5 are shorted and Bit 4 of the
Global Enable Register is set high (1), the on-board IRIG Generator
signals will be enabled and physically shorted to these pins.

3. Specifically for rear-I/O configurations, when the jumper pin pairs for
J2 and J3 are shorted, these I/O pins can then be used for either
IRIG time code reception or as the thirty-second ARINC 429
receiver.

4. The ground pins are provided for shielding, as required.

Jumper Connections
The R830RX board contains a set of four special-purpose jumper pin-pairs.
Each jumper pin-pair can be shorted using a standard 0.1 inch shunt (not
provided); however, the preferred shorting method is wire-wrap or
soldered wire. The jumper pin-pairs are located on the component side of
the R830RX, labeled J2, J3, J4 and J5.

Jumper pin pairs J2 and J3 are provided specifically for use with IRIG-B
signal reception on the R830RX rear-I/O configuration. When the jumper
pins across the J2 and J3 pin pairs are shorted, the IRIG Receiver pins
IRIGRX+ and IRIGRX- will be physically shorted to P14 pins 63 and 64,
respectively. These pins can then be used for either IRIG time code
reception or as the thirty-second ARINC 429 receiver, depending on the
signal source on the external connection.

Jumper pin pairs J4 and J5 are provided specifically for use with the on-
board IRIG generator. When the jumper pins across the J4 and J5 pin pairs
are shorted and Bit 4 of the Global Enable Register is set high (1), the on-
board IRIG Generator signals + and – will be enabled and physically
shorted to ARINC Receive pins RX32A and RX32B, respectively. In this
case, pins RX32A and RX32B will not support ARINC 429 reception and
should not be connected to an external ARINC transmitter.

Notes:

R830RX IRIG-B Signal Connections

CEI-x30 User's Manual 13

An alternate test-only transmitter connection using jumper pin pairs J4 and
J5 is also provided. When jumper pin pairs J4 and J5 are shorted and Bit 4
of the Global Enable Register is set low (0), the on-board transmitter
signals TXA and TXB will be enabled and physically shorted to ARINC
Receive pins RX32A and RX32B, respectively. The output from this test-
only transmitter is not compliant with ARINC 429 transmit specifications
and in this case these I/O pins should not be connected to an off-board
ARINC transmitter or receiver.

IRIG-B Signal Connections
IRIG-B time (AM or DC/TTL) may be received via signals IRIGRX+ and
IRIGRX-. The following IRIG formats are accepted:

Table 12. IRIG Signal Formats Supported

Format Modulation
Frequency

Frequency/
Resolution

Coded
Expressions

B 0, 1 0, 2 0, 1, 2, 3

IRIG-B Generator Signal Connections
Upon completion of the program load, the R830RX initiates IRIG B002
(DC/TTL) transmission from the onboard IRIG encoder. In order to use
the output from the IRIG-B generator, it must first be enabled by shorting
the jumper pins for both J4 and J5 and setting Bit 4 of the Global Enable
Register high (1), (see the routine AR_SET_DEVICE_CONFIG option
ARU_IRIG_OUTPUT_ENABLE). Once enabled, the IRIGTX+/- signals
can source/sink 16 mA at valid TTL levels on these pins; however, pins
RX32A/RX32B will be unavailable for use as an ARINC 429 receiver.

IRIG-B Receiver Signal Connections
IRIG reception via front-I/O is always available on P1 pins 33 and 67.
IRIG reception via rear-I/O is only available on P14 pins 63 and 64 when
J2 and J3 jumper pins are shorted; however, pins 63 and 64 will then be
unavailable for use as an ARINC 429 receiver.

To externally wrap the IRIG receiver to the IRIG generator you must first
enable the IRIG-B generator as discussed above. You would then either
connect the IRIGTX+ signal to IRIGRX+ input and the IRIGTX- signal to
the IRIGRX- input (using front-I/O connections); or optionally (and for
rear-I/O connections), short jumper pins J2 and J3.

CEI-x30 User's Manual 14

CHAPTER 3

CEI-530

Overview
The CEI-530 card is a multiple-channel ARINC interface, available in
several configurations for the PCI platform. When configured as a CEI-
530-1616, this card includes thirty-two ARINC 429 channels, (sixteen
receivers and sixteen transmitters.) There are a variety of configurations
available supporting various ARINC 429 channel counts, ARINC 573/717,
Avionics Discrete I/O, and IRIG time synchronization.

CEI-530 Specifications

Figure 5. CEI-530

CEI-530 CEI-530 Specifications

CEI-x30 User's Manual 15

The CEI-530 is a multiple channel, multiple protocol interface built to the
PCI Local Bus Specification, version 2.2.

PCI Interface
 Standard PCI Interface per the PCI Local Bus Specification Revision

2.2

 +5V and +3.3V PCI signaling compatibility and universal keying

 66 MHz, 32 bit PCI operation

Transmit Channels
 Up to sixteen independent differential serial transmit channels

 Automatic parity generation

 2048 message transmit buffer for each channel

 Baud rate/slew rate software-programmable for each channel

 1024 entry message table supporting scheduled message
transmission for all channels

Receiver Channels
 Up to sixteen independent, differential receive channels

 2048 message buffered mode receive FIFO buffer for each channel

 16384 message merged mode receive FIFO buffer

 Label/SDI message independent snapshot storage for each channel

 Independent merged/individual receive FIFO buffer operation

 64-bit, 1 µsec time-tag is stored with each data element in the FIFO

 Parity error detection

Avionics Discrete Input and Output
 Up to sixteen individual, avionics-level input and output discrete

channels

 Output may switch to ground up to 500mA

 Power-up / reset default inactive

 Fixed input threshold of 2.7 +/- 0.2 volts

PCI Memory Map CEI-530

16 CEI-x30 User's Manual

IRIG Input and Output
 IRIG Timecode receiver and transmitter

Typical Power Consumption

Table 13. Power Consumption

+3.3V 5V +12V -12V
500 mA 50 mA 100 mA

(no TX Loads)
350mA (sixteen
transmitters, max data
rate, 400Ω load each)

100 mA
(no TX Loads)
350mA (sixteen
transmitters, max data
rate, 400Ω load each)

Operating Temperature
 -40 to +85 C

Weight
3.6 ounces, maximum

PCI Memory Map
The following table summarizes the PCI memory map interface definition
for the CEI-530.

Table 14. CEI-530 PCI Memory Map

Region Type Size Description
configuration configuration 64 bytes PCI configuration space

PCI BAR0 memory 512 bytes PCI9056 memory-mapped
local configuration registers

PCI BAR1 I/O 256 bytes
PCI9056 I/O-mapped local
configuration registers,
unused

PCI BAR2 memory 512K bytes CEI-530 host interface
PCI BAR3 unused 0 not used
PCI BAR4 unused 0 not used
PCI BAR5 unused 0 not used

CEI-530 I/0 Connections

CEI-x30 User's Manual 17

I/0 Connections

CEI-530 Outline Drawing

Figure 6. CEI-530 Outline Drawing

Mating Connectors
At publication of this document, the following mating connector was
compatible with the 68-pin (P2) SCSI connector provided on the CEI-530
front panel (bezel). GE Intelligent Platforms Embedded Systems supplies
the adapter cable CONSCSI3-6 for this connection.

Table 15. P2 Input/Output Connector

Connector Part No Description Manufacturer
P2 1-5750913-7 Front Panel 68 pin SCSI-3 AMP/Tyco

At publication of this document, the following mating connectors were
compatible with the 50-pin (P3) IDC ribbon connector used for the CEI-
530 Discrete and IRIG I/O, located towards the rear of the CEI-530 PCB.

Table 16. P3 Input/Output Connector

Connector Part No Description Manufacturer

P3
1-1658622-0 50 pin Ribbon 0.100 Centers AMP/Tyco
3425-6650 50 pin Ribbon 0.100 Centers 3M

I/0 Connections CEI-530

18 CEI-x30 User's Manual

ARINC Input /Output Connector Pin-out
Various CEI-530 product configurations have specific channel pin-out
definitions based on the number of channels and protocols included. The
following table describes the front panel connector pin layout for the CEI-
530. The exact ARINC 429 channel pin-out depends on the number of
receivers and transmitters configured on your CEI-530. For the -J version
of the CEI-530, the ARINC 573/717 protocol support pins replace the
channel 16 ARINC 429 I/O pins. Note the CEI-530 I/O pin assignments
are pin-compatible with the CEI-520 I/O pin assignments.

To externally wrap ARINC signals, connect the transmitter signals to the
respective receiver signals, TXnA to RXnA and TXnB to RXnB.

Figure 7. 68-pin Front-Panel (Bezel) Connector – View Facing Connector Pins

Table 17. CEI-530 Front Panel ARINC I/O Connections

Signal P2 Pin Signal P2 Pin
TX1A 1 TX1B 35
TX2A 2 TX2B 36
TX3A 3 TX3B 37
TX4A 4 TX4B 38
TX5A 5 TX5B 39
TX6A 6 TX6B 40
TX7A 7 TX7B 41
TX8A 8 TX8B 42
TX9A 9 TX9B 43
TX10A 10 TX10B 44
TX11A 11 TX11B 45
TX12A 12 TX12B 46
TX13A 13 TX13B 47
TX14A 14 TX14B 48
TX15A 15 TX15B 49
TX16A 2 16 TX16B 2 50
Ground 1 17 Ground 1 51
RX1A 18 RX1B 52
RX2A 19 RX2B 53
RX3A 20 RX3B 54

CEI-530 I/0 Connections

CEI-x30 User's Manual 19

Signal P2 Pin Signal P2 Pin
RX4A 21 RX4B 55
RX5A 22 RX5B 56
RX6A 23 RX6B 57
RX7A 24 RX7B 58
RX8A 25 RX8B 59
Ground 1 26 Ground 1 60
RX9A 27 RX9B 61
RX10A 28 RX10B 62
RX11A 29 RX11B 63
RX12A 30 RX12B 64
RX13A 31 RX13B 65
RX14A 32 RX14B 66
RX15A 33 RX15B 67
RX16A 2 34 RX16B 2 68

1 The ground pins are provided for shielding, as required.

2 The ARINC 573/717 signals are supported on the respective
channel 16 pins for both the BPRZ and HBP protocols. The
selected protocol processed is based on the selection of the ARINC
717 HBP and BPRZ Encoding bits in the respective Transmit
Channel Configuration register. See the API routine
AR_SET_573_CONFIG for the method to define the ARINC 573/717
active encoding selection for this output pin.

Discrete and IRIG Input/Output Connector Pin-out
All CEI-530 product configurations have the same Discrete and IRIG I/O
pin-out definition for the IDC-50 I/O connector located at the rear of the
board, pin-compatible with the CEI-520 IDC-50 Discrete I/O pin-out.

To externally wrap Discrete I/O channels, connect the output pins to the
respective input pins, DOUTn to DINn.

49 47 45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1

50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2

Figure 8. 50-pin IDC-50 I/O Connector – View Facing Connector Pins

Notes:

I/0 Connections CEI-530

20 CEI-x30 User's Manual

Table 18. CEI-530 IDC-50 I/O Connections

Signal P3 Pin Signal P3 Pin
DIN1 1 DOUT8 26
DIN2 2 DOUT9 27
DIN3 3 DOUT10 28
DIN4 4 DOUT11 29
DIN5 5 DOUT12 30
DIN6 6 DOUT13 31
DIN7 7 DOUT14 32
DIN8 8 DOUT15 33
DIN9 9 DOUT16 34
DIN10 10 Ground 35
DIN11 11 Ground 36
DIN12 12 IRIGRX+ 37
DIN13 13 IRIGRX- 38
DIN14 14 IRIGTX 39
DIN15 15 Ground 40
DIN16 16 Ground 41
Ground 17 Ground 42
Ground 18 N/C 43
DOUT1 19 N/C 44
DOUT2 20 N/C 45
DOUT3 21 N/C 46
DOUT4 22 N/C 47
DOUT5 23 N/C 48
DOUT6 24 N/C 49
DOUT7 25 Ground 50

The ground pins are provided as Discrete I/O return lines or for shielding,
as required.

IRIG-B Signal Connections
IRIG-B time (AM or DC/TTL) may be received via signals IRIGRX+ and
IRIGRX- (Table 31). The following IRIG formats are accepted:

Table 19. IRIG Signal Connections

Format Modulation
Frequency

Frequency/
Resolution

Coded
Expressions

B 0, 1 0, 2 0, 1, 2, 3

Note:

CEI-530 I/0 Connections

CEI-x30 User's Manual 21

Upon completion of the program load, the CEI-530 initiates IRIG B002
(DC/TTL) transmission from the onboard IRIG encoder via the IRIGTX
signal (Table 32). The IRIGTX signal can source/sink 16 mA at valid TTL
levels.

To externally wrap the IRIG generator to the IRIG receiver, connect the
IRIGTX signal to IRIGRX+ input, and connect the IRIGRX- input to
Ground.

CEI-x30 User's Manual 22

CHAPTER 4

RAR-PCIE

Overview
The RAR-PCIE card is a multiple-channel ARINC interface, available in
several configurations for the PCI Express platform. When configured as a
RAR-PCIE-1616, this card includes thirty-two ARINC 429 channels,
(sixteen receivers and sixteen transmitters.) There are a variety of
configurations available supporting various ARINC 429 channel counts,
ARINC 573/717, Avionics Discrete I/O, and IRIG time synchronization.

RAR-PCIE Specifications

Figure 9. RAR-PCIE

RAR-PCIE RAR-PCIE Specifications

CEI-x30 User's Manual 23

The RAR-PCIE is a multiple channel, multiple protocol interface built to
the PCI Express Base Specification 2.0.

PCI Express Interface
 Standard PCI Express Interface per the PCI Express Card

Electromechanical Specification Revision 2.0

Transmit Channels
 Up to sixteen independent differential serial transmit channels

 Automatic parity generation

 2048 message transmit buffer for each channel

 Baud rate/slew rate software-programmable for each channel

 Each channel includes tri-state capability

 1024 entry message table supporting scheduled message
transmission for all channels

Receiver Channels
 Up to sixteen independent, differential receive channels

 2048 message buffered mode receive FIFO buffer for each channel

 16384 message merged mode receive FIFO buffer

 Label/SDI message independent snapshot storage for each channel

 Independent merged/individual receive FIFO buffer operation

 64-bit, 1 µsec time-tag is stored with each data element in the FIFO

 Parity error detection

Avionics Discrete Input and Output
 Up to sixteen individual, avionics-level input and output discrete

channels

 Output may switch to ground up to 500mA

 Power-up / reset default inactive

 Fixed input threshold of 2.0 +/- 0.2 volts

IRIG Input and Output
 IRIG Timecode receiver and transmitter

PCI Memory Map RAR-PCIE

24 CEI-x30 User's Manual

Typical Power Consumption

Table 20. Power Consumption

+3.3V +12V
600 mA 140 mA

(no TX Loads)

Note: Each additional
mA of transmit load
current will add an
additional mA of +12V
supply current.

Operating Temperature
 -40 to +75 C

Weight
3.8 ounces

PCI Memory Map
The following table summarizes the PCI memory map interface definition
for the RAR-PCIE.

Table 21. RAR-PCIE PCI Memory Map

Region Type Size Description
configuration configuration 64 bytes PCI configuration space
PCI BAR0 memory 512K bytes RAR-PCIE host interface
PCI BAR1 unused 0 not used
PCI BAR2 unused 0 not used
PCI BAR3 unused 0 not used
PCI BAR4 unused 0 not used
PCI BAR5 unused 0 not used

RAR-PCIE I/0 Connections

CEI-x30 User's Manual 25

I/0 Connections

RAR-PCIE Outline Drawing

Figure 10. RAR-PCIE Outline Drawing

Mating Connectors
At publication of this document, the following mating connector was
compatible with the 68-pin (P2) SCSI connector provided on the RAR-
PCIE front panel (bezel). GE Intelligent Platforms Embedded Systems
supplies the adapter cable CONSCSI3-6 for this connection.

Table 22. P2 Input/Output Connector

Connector Part No Description Manufacturer
P2 1-5750913-7 Front Panel 68 pin SCSI-3 AMP/Tyco

At publication of this document, the following mating connectors were
compatible with the 50-pin (P3) IDC ribbon connector used for the RAR-
PCIE Discrete and IRIG I/O, located towards the rear of the RAR-PCIE
PCB.

Table 23. P3 Input/Output Connector

Connector Part No Description Manufacturer

P3
1-1658622-0 50 pin Ribbon 0.100 Centers AMP/Tyco
3425-6650 50 pin Ribbon 0.100 Centers 3M

I/0 Connections RAR-PCIE

26 CEI-x30 User's Manual

ARINC Input/Output Connector Pin-out
Various RAR-PCIE product configurations have specific channel pin-out
definitions based on the number of channels and protocols included. The
following table describes the front panel connector pin layout for the RAR-
PCIE. The exact ARINC 429 channel pin-out depends on the number of
receivers and transmitters configured on your RAR-PCIE. For the -J
version of the RAR-PCIE, the ARINC 573/717 protocol support pins
replace the channel 16 ARINC 429 I/O pins. Note the RAR-PCIE I/O pin
assignments are pin-compatible with the CEI-520 and CEI-530 I/O pin
assignments.

To externally wrap ARINC signals, connect the transmitter signals to the
respective receiver signals, TXnA to RXnA and TXnB to RXnB.

Figure 11. 68-pin Front-Panel (Bezel) Connector – View Facing Connector Pins

Table 24. RAR-PCIE Front Panel ARINC I/O Connections

Signal P2 Pin Signal P2 Pin
TX1A 1 TX1B 35
TX2A 2 TX2B 36
TX3A 3 TX3B 37
TX4A 4 TX4B 38
TX5A 5 TX5B 39
TX6A 6 TX6B 40
TX7A 7 TX7B 41
TX8A 8 TX8B 42
TX9A 9 TX9B 43
TX10A 10 TX10B 44
TX11A 11 TX11B 45
TX12A 12 TX12B 46
TX13A 13 TX13B 47
TX14A 14 TX14B 48
TX15A 15 TX15B 49
TX16A 2 16 TX16B 2 50
Ground 1 17 Ground 1 51
RX1A 18 RX1B 52
RX2A 19 RX2B 53

RAR-PCIE I/0 Connections

CEI-x30 User's Manual 27

Signal P2 Pin Signal P2 Pin
RX3A 20 RX3B 54
RX4A 21 RX4B 55
RX5A 22 RX5B 56
RX6A 23 RX6B 57
RX7A 24 RX7B 58
RX8A 25 RX8B 59
Ground 1 26 Ground 1 60
RX9A 27 RX9B 61
RX10A 28 RX10B 62
RX11A 29 RX11B 63
RX12A 30 RX12B 64
RX13A 31 RX13B 65
RX14A 32 RX14B 66
RX15A 33 RX15B 67
RX16A 2 34 RX16B 2 68

1 The ground pins are provided for shielding, as required.

2 The ARINC 573/717 signals are supported on the respective
channel 16 pins for both the BPRZ and HBP protocols. The
selected protocol processed is based on the selection of the ARINC
717 HBP and BPRZ Encoding bits in the respective Transmit
Channel Configuration register. See the API routine
AR_SET_573_CONFIG for the method to define the ARINC 573/717
active encoding selection for this output pin.

Discrete and IRIG Input/Output Connector Pin-out
All RAR-PCIE product configurations have the same Discrete and IRIG
I/O pin-out definition for the IDC-50 I/O connector located at the rear of
the board, pin-compatible with the CEI-520 and CEI-530 IDC-50 Discrete
I/O pin-out.

To externally wrap Discrete I/O channels, connect the output pins to the
respective input pins, DOUTn to DINn.

49 47 45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1

50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2

Figure 12. 50-pin IDC-50 I/O Connector – View Facing Connector Pins

Notes:

I/0 Connections RAR-PCIE

28 CEI-x30 User's Manual

Table 25. RAR-PCIE IDC-50 I/O Connections

Signal P3 Pin Signal P3 Pin
DIN1 1 DOUT8 26
DIN2 2 DOUT9 27
DIN3 3 DOUT10 28
DIN4 4 DOUT11 29
DIN5 5 DOUT12 30
DIN6 6 DOUT13 31
DIN7 7 DOUT14 32
DIN8 8 DOUT15 33
DIN9 9 DOUT16 34
DIN10 10 Ground 35
DIN11 11 Ground 36
DIN12 12 IRIGRX+ 37
DIN13 13 IRIGRX- 38
DIN14 14 IRIGTX 39
DIN15 15 Ground 40
DIN16 16 Ground 41
Ground 17 Ground 42
Ground 18 N/C 43
DOUT1 19 N/C 44
DOUT2 20 N/C 45
DOUT3 21 N/C 46
DOUT4 22 N/C 47
DOUT5 23 N/C 48
DOUT6 24 N/C 49
DOUT7 25 Ground 50

The ground pins are provided as Discrete I/O return lines or for shielding,
as required.

IRIG-B Signal Connections
IRIG-B time (AM or DC/TTL) may be received via signals IRIGRX+ and
IRIGRX- (Table 31). The following IRIG formats are accepted:

Table 26. IRIG Signal Connections

Format Modulation
Frequency

Frequency/
Resolution

Coded
Expressions

B 0, 1 0, 2 0, 1, 2, 3

Note:

RAR-PCIE I/0 Connections

CEI-x30 User's Manual 29

Upon completion of power-up initialization, the RAR-PCIE initiates IRIG
B002 (DC/TTL) transmission from the onboard IRIG encoder via the
IRIGTX signal (Table 32). The IRIGTX signal can source/sink 16 mA at
valid TTL levels.

To externally wrap the IRIG generator to the IRIG receiver, connect the
IRIGTX signal to IRIGRX+ input, and connect the IRIGRX- input to
Ground.

CEI-x30 User's Manual 30

CHAPTER 5

CEI-430

Overview
The CEI-430 card is a multiple-channel ARINC interface, available in
several configurations for the PC/104-Plus platform. When configured as
the CEI-430-1212, this card includes twenty-four ARINC 429 channels,
(twelve receivers and twelve transmitters). There are many configurations
available supporting various ARINC 429 channel counts, ARINC 573/717,
Avionics Discrete I/O, Differential Discrete I/O, and IRIG time
synchronization.

CEI-430 Specifications

Figure 13. CEI-430

CEI-430 CEI-430 Specifications

CEI-x30 User's Manual 31

The CEI-430 is a multiple channel, multiple protocol interface built to the
PC/104 Specification, version 2.5, PC/104-Plus Specification, version 2.0,
and PCI-104 Specification, version 1.0.

PCI Interface
 Standard PCI Interface per the PCI Local Bus Specification Revision

2.2

 +5V and +3.3V PCI signaling compatibility and universal keying

 33 MHz, 32 bNote:

Per the PC/104-Plus Specification, the PCI Stack location of the CEI-430
is determined by card jumper shunts S0/S1. Refer to Table 27 for
jumper mapping.

Table 27. PCI Stack Location Shunts

Stack Location Installed Shunts
 S1 S0

1 IN IN
2 IN OUT
3 OUT IN
4 OUT OUT

Transmit Channels
 Up to twelve independent differential serial transmit channels

 Automatic parity generation

 2048 message transmit buffer for each channel

 Baud rate/slew rate software-programmable for each channel

 1024 entry message table supporting scheduled message
transmission for all channels

CEI-430 Specifications CEI-430

32 CEI-x30 User's Manual

Receiver Channels
 Up to twelve independent, differential receive channels

 2048 message buffered mode receive FIFO buffer for each channel

 16384 message merged mode receive FIFO buffer

 Label/SDI message independent snapshot storage for each channel

 Independent merged/individual receive FIFO buffer operation

 64-bit, 1 µsec time-tag is stored with each data element in the FIFO

 Parity error detection

Avionics Discrete Input and Output
 Up to sixteen bi-directional, avionics-level discrete channels

 Output may switch to ground up to 500mA

 Power-up / reset default inactive

 Fixed input threshold of 2.7 +/- 0.2 volts

Differential Discrete Input and Output
 Up to four RS-485 discrete channels

 Power-up / reset default inactive

IRIG Input and Output
 IRIG Time-code receiver and transmitter

Typical Power Consumption

Table 28. Power Consumption

5V 12V -12V
300 mA 80 mA

(no TX Loads)
200mA (twelve
transmitters, maximum
data rate, 400Ω load each)

80 mA
(no TX Loads)
200mA (twelve
transmitters, maximum
data rate, 400Ω load
each)

CEI-430 PCI Memory Map

CEI-x30 User's Manual 33

Operating Temperature
 -40 to +85 C

Weight
3.6 ounces, maximum

PCI Memory Map
The following table summarizes the PCI memory map interface definition
for the CEI-430.

Table 29. CEI-430 PCI Memory Map

Region Type Size Description
configuration configuration 64 bytes PCI configuration space

PCI BAR0 memory 128 bytes PCI9030 memory-mapped
local configuration registers

PCI BAR1 unused 0
PCI9030 I/O-mapped local
configuration registers,
unused

PCI BAR2 memory 512K bytes CEI-430 host interface
PCI BAR3 unused 0 not used
PCI BAR4 unused 0 not used
PCI BAR5 unused 0 not used

I/0 Connections CEI-430

34 CEI-x30 User's Manual

I/0 Connections

CEI-430 Outline Drawing

Figure 14. CEI-430 Outline Drawing

Input/Output Connectors
At publication of this document, the following mating connectors were
compatible with the 50-pin (P1) and 40-pin (P2) IDC ribbon connectors
used on the CEI-430. One each mating connector and retaining clip is
provided for these connectors.

Table 30. CEI-430 Input/Output Connectors

Connector Part No Description Manufacturer

P1
1-1658622-0 50 pin Ribbon 0.100 Centers AMP/Tyco
3425-6650 50 pin Ribbon 0.100 Centers 3M

P2
1-1658622-9 40 pin Ribbon 0.100 Centers AMP/Tyco
3417-6640 40 pin Ribbon 0.100 Centers 3M

Input/Output Connector Pin-out
Various CEI-430 product configurations have specific channel pin-out
definitions based on the number of channels and protocols included. Table
28 describes the P1 connector pin layout for the CEI-430 module. The
exact ARINC 429 channel pin-out depends on the number of receivers and

CEI-430 I/0 Connections

CEI-x30 User's Manual 35

transmitters configured on your CEI-430. Note that for the -J version of
the CEI-430, ARINC 573/717 protocol support replaces ARINC 429
Channel 12.

To externally wrap ARINC signals, connect the transmitter signals to the
respective receiver signals, TXnA to RXnA and TXnB to RXnB.

49 47 45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1

50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2

Figure 15. P1 50-pin IDC ARINC Interface Connector – View Facing Connector
Pins

Table 31. CEI-430 P1 ARINC I/O Connections

Signal P1 Pin Signal P1 Pin
RX1A 1 RX1B 2
RX2A 3 RX2B 4
RX3A 5 RX3B 6
RX4A 7 RX4B 8
RX5A 9 RX5B 10
RX6A 11 RX6B 12
RX7A 13 RX7B 14
RX8A 15 RX8B 16
RX9A 17 RX9B 18
RX10A 19 RX10B 20
RX11A 21 RX11B 22
RX12A 1 23 RX12B 1 24
Ground 25 Ground 26
TX1A 27 TX1B 28
TX2A 29 TX2B 30
TX3A 31 TX3B 32
TX4A 33 TX4B 34
TX5A 35 TX5B 36
TX6A 37 TX6B 38
TX7A 39 TX7B 40
TX8A 41 TX8B 42
TX9A 43 TX9B 44
TX10A 45 TX10B 46
TX11A 47 TX11B 48
TX12A 2 49 TX12B 2 50

I/0 Connections CEI-430

36 CEI-x30 User's Manual

1. For –J configurations, the ARINC 573/717 protocol replaces
ARINC 429 channel 12. The selected protocol processed is
based on the selection of the ARINC 717 HBP and BPRZ
Encoding bits in the respective Transmit Channel Configuration
register. See the API routine AR_SET_573_CONFIG for the
method to define the ARINC 573/717 active encoding selection
for these output pins.

2. The ground pins are provided for shielding, as necessary

39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1

40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2

Figure 16. P2 40-pin IDC I/O Connector – View Facing Connector Pins

Table 32. CEI-430 P2 I/O Connections

Signal P2 Pin Signal P2 Pin
Ground 1 Ground 2
ADISC1 3 ADISC2 4
ADISC3 5 ADISC4 6
ADISC5 7 ADISC6 8
ADISC7 9 ADISC8 10
ADISC9 11 ADISC10 12
ADISC11 13 ADISC12 14
ADISC13 15 ADISC14 16
ADISC15 17 ADISC16 18
Ground 19 Ground 20
DIFF1+ 21 DIFF1- 22
DIFF2+ 23 DIFF2- 24
DIFF3+ 25 DIFF3- 26
DIFF4+ 27 DIFF4- 28
Ground 29 Ground 30
IRIGRX+ 31 IRIGRX- 32
IRIGTX 33 GND 34
Reserved 35 Reserved 36
Reserved 37 Reserved 38
Reserved 39 Reserved 40

The ground pins are provided as Discrete I/O return lines or for shielding,
as required.

Notes:

Note:

CEI-430 I/0 Connections

CEI-x30 User's Manual 37

IRIG-B Signal Connections
IRIG-B time (AM or DC/TTL) may be received via signals IRIGRX+ and
IRIGRX- (Table 31). The following IRIG formats are accepted:

Table 33. IRIG Signal Connections

Format Modulation
Frequency

Frequency/
Resolution

Coded
Expressions

B 0, 1 0, 2 0, 1, 2, 3

Upon completion of the program load, the CEI-430 initiates IRIG B002
(DC/TTL) transmission from the onboard IRIG encoder via the IRIGTX
signal (Table 32). The IRIGTX signal can source/sink 16 mA at valid TTL
levels.

To externally wrap the IRIG generator to the IRIG receiver, connect the
IRIGTX signal to IRIGRX+ input, and connect the IRIGRX- input to
Ground.

CEI-x30 User's Manual 38

CHAPTER 6

CEI-430A

Overview
The CEI-430A card is a multiple-channel ARINC 429 interface version of
the CEI-430 with an emphasis on high ARINC 429 receive channel count,
designed for the PC/104-Plus platform. When configured as the CEI-430-
2404, this card includes twenty-eight ARINC 429 channels, (twenty-four
receivers and four transmitters), and Avionics Discrete I/O. Configurations
are available with additional support for ARINC 573/717 and IRIG time
synchronization.

CEI-430A Specifications

Figure 17. CEI-430A

CEI-430A CEI-430A Specifications

CEI-x30 User's Manual 39

The CEI-430A is a multiple channel, multiple protocol interface built to the
PC/104 Specification, version 2.5, PC/104-Plus Specification, version 2.0,
and PCI-104 Specification, version 1.0.

PCI Interface
 Standard PCI Interface per the PCI Local Bus Specification Revision

2.2

 +5V and +3.3V PCI signaling compatibility and universal keying

 33 MHz, 32 bit PCI operation

Per the PC/104-Plus Specification, the PCI Stack location of the CEI-430
is determined by card jumper shunts S0/S1. Refer to Table 34 for
jumper mapping.

Table 34. PCI Stack Location Shunts

Stack Location Installed Shunts
 S1 S0

1 IN IN
2 IN OUT
3 OUT IN
4 OUT OUT

Transmit Channels
 Two or four independent differential serial transmit channels

 Optional dedicated ARINC 573 / 717 transmit channel

 Automatic parity generation

 2048 message transmit buffer for each channel

 Baud rate/slew rate software-programmable for each channel

 1024 entry message table supporting scheduled message
transmission for all channels

Note:

CEI-430A Specifications CEI-430A

40 CEI-x30 User's Manual

Receiver Channels
 Twenty-four independent, differential receive channels

 Optional dedicated ARINC 573 / 7171 receive channel

 2048 message buffered mode receive FIFO buffer for each channel

 16384 message merged mode receive FIFO buffer

 Label/SDI message independent snapshot storage for each channel

 Independent merged/individual receive FIFO buffer operation

 64-bit, 1 µsec time-tag is stored with each data element in the FIFO

 Parity error detection

Avionics Discrete Input and Output
 Sixteen bi-directional, avionics-level discrete channels

 Output may switch to ground up to 500mA

 Power-up / reset default inactive

 Fixed input threshold of 2.7 +/- 0.2 volts

IRIG Input and Output
 IRIG Time-code receiver and transmitter

Typical Power Consumption

Table 35. Power Consumption

5V
300 mA (no TX loads)
500 mA (four transmitters, 100KHz data rate, 400Ω load each

Operating Temperature
 -40 to +85 C

Weight
3.6 ounces, maximum

CEI-430A PCI Memory Map

CEI-x30 User's Manual 41

PCI Memory Map
The following table summarizes the PCI memory map interface definition
for the CEI-430A.

Table 36. CEI-430A PCI Memory Map

Region Type Size Description
configuration configuration 64 bytes PCI configuration space

PCI BAR0 memory 128 bytes PCI9030 memory-mapped
local configuration registers

PCI BAR1 unused 0
PCI9030 I/O-mapped local
configuration registers,
unused

PCI BAR2 memory 512K bytes CEI-430A host interface
PCI BAR3 unused 0 not used
PCI BAR4 unused 0 not used
PCI BAR5 unused 0 not used

I/0 Connections CEI-430A

42 CEI-x30 User's Manual

I/0 Connections

CEI-430A Outline Drawing

Figure 18. CEI-430A Outline Drawing

Input / Output Connectors
At publication of this document, the following mating connectors were
compatible with the 50-pin (P1) and 40-pin (P2) IDC ribbon connectors
used on the CEI-430A. One each mating connector and retaining clip is
provided for these connectors.

Table 37. CEI-430 Input/Output Connectors

Connector Part No Description Manufacturer

P1
1-1658622-0 50 pin Ribbon 0.100 Centers AMP/Tyco
3425-6650 50 pin Ribbon 0.100 Centers 3M

P2
1-1658622-9 40 pin Ribbon 0.100 Centers AMP/Tyco
3417-6640 40 pin Ribbon 0.100 Centers 3M

Input / Output Connector Pin-out
Tables 38 and 39 describe the connector pin layout for the CEI-430A
module. The exact pin-out for the P2 connector depends on the number of
ARINC 429 channels, ARINC 717 support, and IRIG support, configured
on your CEI-430A.

CEI-430A I/0 Connections

CEI-x30 User's Manual 43

To externally wrap ARINC signals, connect the P2 transmitter signals to
the respective receiver signals, TXnA to RXnA and TXnB to RXnB.

49 47 45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1

50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2

Figure 19. P1 50-pin IDC Interface Connector – View Facing Connector Pins

Table 38. CEI-430A P1 ARINC I/O Connections

Signal P1 Pin Signal P1 Pin
RX1A 1 RX1B 2
RX2A 3 RX2B 4
RX3A 5 RX3B 6
RX4A 7 RX4B 8
RX5A 9 RX5B 10
RX6A 11 RX6B 12
RX7A 13 RX7B 14
RX8A 15 RX8B 16
RX9A 17 RX9B 18
RX10A 19 RX10B 20
RX11A 21 RX11B 22
RX12A 23 RX12B 24
Ground 25 Ground 26
RX13A 27 RX13B 28
RX14A 29 RX14B 30
RX15A 31 RX15B 32
RX16A 33 RX16B 34
RX17A 35 RX17B 36
RX18A 37 RX18B 38
RX19A 39 RX19B 40
RX20A 41 RX20B 42
RX21A 43 RX21B 44
RX22A 45 RX22B 46
RX23A 47 RX23B 48
RX24A 49 RX24B 50

The ground pins are provided for shielding, as necessary

Notes:

I/0 Connections CEI-430A

44 CEI-x30 User's Manual

39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1

40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2

Figure 20. P2 40-pin IDC I/O Connector – View Facing Connector Pins

Table 39. CEI-430A P2 I/O Connections

Signal P2 Pin Signal P2 Pin
Ground 1 Ground 2
ADISC1 3 ADISC2 4
ADISC3 5 ADISC4 6
ADISC5 7 ADISC6 8
ADISC7 9 ADISC8 10
ADISC9 11 ADISC10 12
ADISC11 13 ADISC12 14
ADISC13 15 ADISC14 16
ADISC15 17 ADISC16 18
Ground 19 Ground 20
429TX1A 21 429TX1B 22
429TX2A 23 429TX2B 24
429TX3A 25 429TX3B 26
429TX4A 27 429TX4B 28
Ground 29 Ground 30
IRIGRX+ 31 IRIGRX- 32
IRIGTX 33 GND 34
717RXA 35 717RXB 36
NC 37 717TXB 38
NC 39 717TXA 40

The ground pins are provided as Discrete I/O return lines or for shielding,
as required.

Pins 37 and 39 have no connection.

Note:

CEI-430A I/0 Connections

CEI-x30 User's Manual 45

IRIG-B Signal Connections
IRIG-B time (AM or DC/TTL) may be received via signals IRIGRX+ and
IRIGRX- (Table 40). The following IRIG formats are accepted:

Table 40. IRIG Signal Connections

Format Modulation
Frequency

Frequency/
Resolution

Coded
Expressions

B 0, 1 0, 2 0, 1, 2, 3

Upon completion of the program load, the CEI-430 initiates IRIG B002
(DC/TTL) transmission from the onboard IRIG encoder via the IRIGTX
signal (Table 32). The IRIGTX signal can source/sink 16 mA at valid TTL
levels.

To externally wrap the IRIG generator to the IRIG receiver, connect the
IRIGTX signal to IRIGRX+ input, and connect the IRIGRX- input to
Ground.

CEI-x30 User's Manual 46

CHAPTER 7

AMC-A30

Overview
The AMC-A30 product line is a multiple-channel ARINC interface,
available in several configurations. When configured as the AMC-A30-
1414, this product includes twenty-eight ARINC 429 channels, (fourteen
receivers and fourteen transmitters), in an AMC form-factor. There are a
variety of configurations available supporting various ARINC 429 channel
counts, ARINC 573/717, Avionics Discrete I/O, and IRIG time
synchronization.

AMC-A30 Specifications

Figure 21. AMC-A30

AMC-A30 AMC-A30 Specifications

CEI-x30 User's Manual 47

The AMC-A30 is a multiple channel, multiple protocol interface built to
the AMC.1 specification.

AMC/PCIe Interface
 Half-height, single-width AMC form factor

 AMC.1 compliant

 PCI Express (x4 lane) host interface

Transmit Channels
 Up to fourteen independent differential serial transmit channels

 Automatic parity generation

 2048 message transmit buffer for each channel

 Baud rate/slew rate software-programmable for each channel

 1024 entry message table supporting scheduled message
transmission for all channels

Receiver Channels
 Up to fourteen independent, differential receive channels

 2048 message buffered mode receive FIFO buffer for each channel.

 16384 message merged mode receive FIFO buffer

 Label/SDI message independent snapshot storage for each channel

 Independent merged/individual receive FIFO buffer operation.

 64-bit, 1 µsec time-tag is stored with each data element in the FIFO

 Parity error detection

Avionics Discrete Input and Output
 Four bi-directional, avionics-level discrete channels

 Output may switch to ground up to 500mA

 Fixed input threshold of 2.7 +/- 0.2 volts

IRIG Input and Output
 IRIG Time-code receiver and transmitter

PCI Memory Map AMC-A30

48 CEI-x30 User's Manual

Typical Power Consumption

Table 41. Payload Power Consumption

+12V
370 mA (no TX Loads)

Operating Temperature
 -40 to +85 C

Weight
4.8 ounces

PCI Memory Map
The following table summarizes the PCI memory map interface definition
for the AMC-A30.

Table 42. AMC-A30 PCI Memory Map

Region Type Size Description
configuration configuration 64 bytes PCI configuration space

PCI BAR0 memory 512 bytes PCI9056 memory-mapped
local configuration registers

PCI BAR1 I/O 256 bytes
PCI9056 I/O-mapped local
configuration registers,
unused

PCI BAR2 memory 512K bytes AMC-A30 host interface
PCI BAR3 unused 0 not used
PCI BAR4 unused 0 not used
PCI BAR5 unused 0 not used

I/O Connections

Input/Output Connectors
At publication of this document, the following mating connector was
compatible with the 100-pin Micro-D connector used on the AMC-A30.

AMC-A30 I/O Connections

CEI-x30 User's Manual 49

Table 43. Input/Output Connectors

Part No. Description Manufacturer
MWDM2L-100PSS 100-pin Micro-D Connector Glenair

Input/Output Connector Pin-out
The different AMC-A30 product configurations have specific channel pin-
out definitions based on the number of channels and protocols installed.
Table 44 describes the 100-pin front panel for the ARINC 429 version of
the AMC-A30 module. The exact ARINC 429 channel pin-out depends on
the number of receivers and transmitters configured on your AMC-A30.
Table 45 describes the pin-out differences for the -J version of the AMC-
A30; these pins support ARINC 573/717 protocols on the pins used by the
upper channels on non-J configurations.

To externally wrap ARINC signals, connect the transmitter signals to the
respective receiver signals, TXnA to RXnA and TXnB to RXnB.

Table 44. AMC-A30 I/O Connections

Signal Pin Signal Pin Signal Pin
Reserved 1 TX10B 35 Reserved 69
Gnd (note) 2 TX8B 36 RX7A 70
Reserved 3 TX7B 37 Reserved 71
Discrete 4 4 TX5B 38 RX4A 72
Reserved 5 TX4B 39 Reserved 73
TX12B 6 TX2B 40 RX1A 74
Reserved 7 TX1B 41 Reserved 75
TX9B 8 Discrete 2 42 Reserved 76
Reserved 9 RX14B 43 Reserved 77
TX6B 10 RX12B 44 Reserved 78
Reserved 11 RX11B 45 IRIGRX+ 79
TX3B 12 RX9B 46 Gnd (note) 80
Reserved 13 RX8B 47 TX14A 81
Gnd (note) 14 RX6B 48 TX13A 82
Reserved 15 RX5B 49 TX11A 83
RX13B 16 RX3B 50 TX10A 84
Reserved 17 RX2B 51 TX8A 85
RX10B 18 IRIG_TX 52 TX7A 86
Reserved 19 Reserved 53 TX5A 87
RX7B 20 Discrete 3 54 TX4A 88
Reserved 21 Reserved 55 TX2A 89
RX4B 22 TX12A 56 TX1A 90

I/O Connections AMC-A30

50 CEI-x30 User's Manual

Signal Pin Signal Pin Signal Pin
Reserved 23 Reserved 57 Discrete 1 91
RX1B 24 TX9A 58 RX14A 92
Reserved 25 Reserved 59 RX12A 93
Reserved 26 TX6A 60 RX11A 94
Reserved 27 Reserved 61 RX9A 95
Reserved 28 TX3A 62 RX8A 96
Reserved 29 Reserved 63 RX6A 97
IRIGRX- 30 Gnd (note) 64 RX5A 98
Gnd (note) 31 Reserved 65 RX3A 99
TX14B 32 RX13A 66 RX2A 100
TX13B 33 Reserved 67
TX11B 34 RX10A 68

The ground pins are provided as Discrete I/O return lines or for shielding,
as necessary.

Table 45. AMC-A30-xxxx-J I/O Connection for ARINC 573/717

Signal Pin Signal Pin Signal Pin
ARINC
717 BPRZ
TXB

6 Reserved 43 Reserved 81

ARINC
717 HBP
RXB

16 ARINC 717
BPRZ RXB

44 ARINC 717
HBP TXB

82

Reserved 32 ARINC 717
TXA (note)

56 Reserved 92

Reserved 33 ARINC 717
HBP RXA

66 ARINC 717
BPRZ RXA

93

The ARINC 573/717 TXA (High) signal is supported on this pin for both
the BPRZ and HBP protocols. The selected protocol processed is based
on the selection of the ARINC 717 HBP and BPRZ Encoding bits in the
respective Transmit Channel Configuration register. See the API routine
AR_SET_573_CONFIG for the method to define the ARINC 573/717
active encoding selection for this output pin.

IRIG-B Signal Connections
IRIG-B time (AM or DC/TTL) may be received via signals IRIGRX+ and
IRIGRX- (see Table 44). The following IRIG formats are accepted:

Note:

Note:

AMC-A30 I/O Connections

CEI-x30 User's Manual 51

Table 46. IRIG Signal Formats

Format Modulation
Frequency

Frequency/
Resolution

Coded
Expressions

B 0, 1 0, 2 0, 1, 2, 3

Upon completion of the program load, the AMC-A30 initiates IRIG B002
(DC/TTL) transmission from the onboard IRIG encoder via the IRIGTX
signal (see Table 44). The IRIGTX signal can source/sink 16 mA at valid
TTL levels.

To externally wrap the IRIG generator to the IRIG receiver, connect the
IRIGTX signal to IRIGRX+ input, and connect the IRIGRX- input to
Ground.

CEI-x30 User's Manual 52

CHAPTER 8

RAR-EC

Overview
The RAR-EC card is a multiple-channel ARINC interface, available in
several configurations for the ExpressCard form factor. When configured
as a RAR-EC-74, this card includes eleven ARINC 429 channels, (seven
receivers and four transmitters). There are a variety of configurations
available supporting various ARINC 429 channel counts, ARINC 573/717,
Avionics Discrete I/O, and IRIG time synchronization.

RAR-EC Specifications

Figure 22. RAR-EC

The RAR-EC is a multiple channel, multiple protocol interface built to the
ExpressCard Specification, Release 1.2.

RAR-EC RAR-EC Specifications

CEI-x30 User's Manual 53

ExpressCard Interface
 PCI-Express Interface per the PCI Local Bus Specification Revision

2.2

 54 mm ExpressCard format

Transmit Channels
 Up to four independent differential serial transmit channels

 Automatic parity generation

 2048 message transmit buffer for each channel

 Baud rate/slew rate software-programmable for each channel

 1024 entry message table supporting scheduled message
transmission for all channels

Receiver Channels
 Up to seven independent, differential receive channels

 2048 message buffered mode receive FIFO buffer for each channel

 16384 message merged mode receive FIFO buffer

 Label/SDI message independent snapshot storage for each channel

 Independent merged/individual receive FIFO buffer operation

 64-bit, 1 µsec time-tag is stored with each data element in the FIFO

 Parity error detection

Avionics Discrete Input and Output
 Up to four bi-directional, avionics-level discrete channels

 Output may switch to ground up to 500mA

 Power-up / reset default inactive

 Fixed input threshold of 2.7 +/- 0.2 volts

IRIG Input and Output
 IRIG Timecode receiver and transmitter

Typical Power Consumption

Table 47. Power Consumption

PCI Memory Map RAR-EC

54 CEI-x30 User's Manual

+3.3V 1.5V
750 mA 0mA

Operating Temperature
 -40 to +85 C

Weight
TBD ounces, maximum

PCI Memory Map
The following table summarizes the PCI memory map interface definition
for the RAR-EC.

Table 48. RAR-EC PCI Memory Map

Region Type Size Description
configuration configuration 64 bytes PCI configuration space

PCI BAR0 memory 128 bytes PCI9030 memory-mapped
local configuration registers

PCI BAR1 unused 0
PCI9030 I/O-mapped local
configuration registers,
unused

PCI BAR2 memory 512K bytes RAR-EC host interface
PCI BAR3 unused 0 not used
PCI BAR4 unused 0 not used
PCI BAR5 unused 0 not used

I/0 Connections

Mating Connectors
At publication of this document, the following mating connector was
compatible with the Champ36 connector provided on the RAR-EC
enclosure end-plate. GE Intelligent Platforms Embedded Systems supplies
the adapter cable CONAREC-30 or CONAREC-180 for this connection.

Table 49. P1 Input/Output Connector

RAR-EC I/0 Connections

CEI-x30 User's Manual 55

Connector Part No Description Manufacturer
P1 2-5175677-5 Champ 36 AMP/Tyco
P1 0543063619 Champ 36 Molex

ARINC Input/Output Connector Pin-out
Various RAR-EC product configurations have specific channel pin-out
definitions based on the number of channels and protocols included. The
following table describes the P1 connector pin layout for the RAR-EC.
The exact ARINC 429 channel pin-out depends on the number of receivers
and transmitters configured on your RAR-EC. Note that for the -J version
of the RAR-EC, ARINC 573/717 protocol support replaces the receive
channel 7 and transmit channel 4 ARINC 429 I/O pins.

To externally wrap ARINC signals, connect the transmitter signals to the
respective receiver signals, TXnA to RXnA and TXnB to RXnB.

Table 50. RAR-EC P1 ARINC I/O Connections

Signal P1 Pin Signal P1 Pin
RX1A 1 RX1B 19
RX2A 2 RX2B 20
RX3A 3 RX3B 21
RX4A 4 RX4B 22
RX5A 5 RX5B 23
RX6A 6 RX6B 24
RX7A2 7 RX7B2 25
TX1A 8 TX1B 26
TX2A 9 TX2B 27
TX3A 10 TX3B 28
TX4A2 11 TX4B2 29
Discrete I/O 1 12 Discrete I/O 2 30
Discrete I/O 3 13 Discrete I/O 4 31
IRIG RX+ 14 IRIG RX- 32
IRIG TX 15 Ground 1 33
Reserved 16 Ground 1 34
Reserved 17 Reserved 35
Reserved 18 Reserved 36

I/0 Connections RAR-EC

56 CEI-x30 User's Manual

1 The ground pins are provided as Discrete I/O return lines or for
shielding, as required.

2 The ARINC 573/717 signals are supported on the respective
transmit channel 4 and receive channel 7 pins for both the BPRZ
and HBP protocols. The selected transmit protocol processed is
based on the selection of the ARINC 717 HBP and BPRZ Encoding
bits in the respective Transmit Channel Configuration register. See
the API routine AR_SET_573_CONFIG for the method to define the
ARINC 573/717 active encoding selection for this output pin.

Transition Cable Pin-out
An adapter cable is provided to transition from the 36 pin device I/O
connector to a 37-pin Subminiature D receptacle connector, with the pin-
out shown below.

Figure 23. P1 Connector – View Facing Connector Pins

Table 51. RAR-EC-XX Transition Cable [37-Pin D-Subminiature]
Connections

Adapter
Pin-out SIGNAL Adapter

Pin-out SIGNAL

1 RX1A 20 RX1B
2 RX2A 21 RX2B
3 RX3A 22 RX3B
4 RX4A 23 RX4B
5 RX5A 24 RX5B
6 RX6A 25 RX6B
7 RX7A 26 RX7B
8 Reserved 27 Reserved
9 Reserved 28 Reserved
10 TX1A 29 TX1B
11 TX2A 30 TX2B
12 TX3A 31 TX3B
13 TX4A 32 TX4B
14 Discrete I/O 1 33 Discrete I/O 2
15 Discrete I/O 3 34 Discrete I/O 4
16 Reserved 35 Reserved

Notes:

RAR-EC I/0 Connections

CEI-x30 User's Manual 57

Adapter
Pin-out SIGNAL Adapter

Pin-out SIGNAL

17 Ground 36 Ground
18 IRIG TX 37 IRIG RX-
19 IRIG RX+

1 The ground pins are provided as Discrete I/O return lines or for
shielding, as required.

2 The ARINC 573/717 signals are supported on their transmit channel
4 and receive channel 7 pins for both the BPRZ and HBP protocols.
The selected transmit protocol processed is based on the selection
of the ARINC 717 HBP and BPRZ Encoding bits in the respective
Transmit Channel Configuration register. See the API routine
AR_SET_573_CONFIG for the method to define the ARINC 573/717
active encoding selection for this output pin.

IRIG-B Signal Connections
IRIG-B time (AM or DC/TTL) may be received via signals IRIGRX+ and
IRIGRX-. The following IRIG formats are accepted:

Table 52. IRIG Signal Connections

Format Modulation
Frequency

Frequency/
Resolution

Coded
Expressions

B 0, 1 0, 2 0, 1, 2, 3

Upon completion of the program load, the RAR-EC initiates IRIG B002
(DC/TTL) transmission from the onboard IRIG encoder via the IRIGTX
signal. The IRIGTX signal can source/sink 16 mA at valid TTL levels.

To externally wrap the IRIG generator to the IRIG receiver, connect the
IRIGTX signal to IRIGRX+ input, and connect the IRIGRX- input to
Ground.

Notes:

CEI-x30 User's Manual 58

CHAPTER 9

RAR-CPCI

Overview
The RAR-CPCI card is a multiple-channel ARINC interface, available in
several configurations for the CompactPCI platform. When configured as
a RAR-CPCI-1616, this card includes thirty-two ARINC 429 channels,
(sixteen receivers and sixteen transmitters). There are a variety of
configurations available supporting various ARINC 429 channel counts,
ARINC 573/717, Avionics Discrete I/O, and IRIG time synchronization.

RAR-CPCI Specifications

Figure 24. RAR-CPCI

RAR-CPCI RAR-CPCI Specifications

CEI-x30 User's Manual 59

The RAR-CPCI is a multiple channel, multiple protocol interface built to
the PICMG 2.0 Revision 3 CompactPCI® Specification, PXI™
Specification Revision 2.0, and PXI™ Hardware Specification Revision
2.1.

PCI Interface
 Standard PCI Interface per the PCI Local Bus Specification Revision

2.2

 +5V and +3.3V PCI signaling compatibility and universal keying

 66 MHz, 32 bit PCI operation

Transmit Channels
 Up to sixteen independent differential serial transmit channels

 Automatic parity generation

 2048 message transmit buffer for each channel

 Baud rate/slew rate software-programmable for each channel

 1024 entry message table supporting scheduled message
transmission for all channels

Receiver Channels
 Up to sixteen independent, differential receive channels

 2048 message buffered mode receive FIFO buffer for each channel

 16384 message merged mode receive FIFO buffer

 Label/SDI message independent snapshot storage for each channel

 Independent merged/individual receive FIFO buffer operation

 64-bit, 1 µsec time-tag is stored with each data element in the FIFO

 Parity error detection

Avionics Discrete Input and Output
 Sixteen bi-directional, avionics-level discrete channels

 Output may switch to ground up to 500mA

 Power-up / reset default inactive

 Fixed input threshold of 2.7 +/- 0.2 volts

PCI Memory Map RAR-CPCI

60 CEI-x30 User's Manual

IRIG Input and Output
 IRIG Timecode receiver and transmitter

Typical Power Consumption

Table 53. Power Consumption

+3.3V 5V +12V -12V
500 mA 50 mA 100 mA

(no TX Loads)
350mA (sixteen
transmitters, max data
rate, 400Ω load each)

100 mA
(no TX Loads)
350mA (sixteen
transmitters, max data
rate, 400Ω load each)

Operating Temperature
 -40 to +85 C

Weight
3.6 ounces, maximum

PCI Memory Map
The following table summarizes the PCI memory map interface definition
for the RAR-CPCI.

Table 54. RAR-CPCI PCI Memory Map

Region Type Size Description
configuration configuration 64 bytes PCI configuration space

PCI BAR0 memory 512 bytes PCI9056 memory-mapped
local configuration registers

PCI BAR1 I/O 256 bytes
PCI9056 I/O-mapped local
configuration registers,
unused

PCI BAR2 memory 512K bytes RAR-CPCI host interface
PCI BAR3 unused 0 not used
PCI BAR4 unused 0 not used
PCI BAR5 unused 0 not used

RAR-CPCI I/0 Connections

CEI-x30 User's Manual 61

I/0 Connections

RAR-CPCI Outline Drawing

Figure 25. RAR-CPCI Outline Drawing

Mating Connectors
At publication of this document, the following mating connector was
compatible with the 50-pin (P1 and P2) Champ connectors provided on the
RAR-CPCI front panel (bezel). GE Intelligent Platforms Embedded
Systems supplies the adapter cable CONCEI-620 for this connection.

Table 55. P1/P2 Input/Output Connectors

Connector Part No Description Manufacturer
P1 and P2 787131-1 Front Panel 50 pin Champ AMP/Tyco

ARINC Input/Output Connector Pin-out
Various RAR-CPCI product configurations have specific channel pin-out
definitions based on the number of channels and protocols included. The
following table describes the P1/P2 connector pin layout for the RAR-
CPCI. The exact ARINC 429 channel pin-out depends on the number of
receivers and transmitters configured on your RAR-CPCI. For the -J
version of the RAR-CPCI, the ARINC 573/717 protocol support pins
replace the channel 16 ARINC 429 I/O pins. Note the RAR-CPCI I/O
connections are not pin-compatible with the CEI-620.

I/0 Connections RAR-CPCI

62 CEI-x30 User's Manual

Use the cPCI J2 back plane connector to couple the RAR-CPCI to ARINC
devices and discrete inputs/outputs for rear panel configurations. For front
panel configurations, two connectors, P1 and P2, are provided. Each
connector is identical.

To externally wrap ARINC signals, connect the transmitter signals to the
respective receiver signals, TXnA to RXnA and TXnB to RXnB.

Figure 26. P1/P2 50-pin Front-Panel (Bezel) Connectors – AMP Champ 0.8 mm
Receptacle Connectors, View Facing Connector Pins

Table 56. RAR-CPCI P1/P2 Front Panel I/O Connections

P1 Connector P2 Connector
Pin D50 Signal Pin D50 Signal Pin D50 Signal Pin D50 Signal
1 1 TX1A 26 34 TX1B 1 1 TX9A 26 34 TX9B

2 18 TX2A 27 2 TX2B 2 18 TX10A 27 2 TX10B

3 35 TX3A 28 19 TX3B 3 35 TX11A 28 19 TX11B

4 3 TX4A 29 36 TX4B 4 3 TX12A 29 36 TX12B

5 20 TX5A 30 4 TX5B 5 20 TX13A 30 4 TX13B

6 37 TX6A 31 21 TX6B 6 37 TX14A 31 21 TX14B

7 5 TX7A 32 38 TX7B 7 5 TX15A 32 38 TX15B

8 22 TX8A 33 6 TX8B 8 22 TX16A2 33 6 TX16B2

9 39 RX1A 34 23 RX1B 9 39 RX9A 34 23 RX9B

10 7 RX2A 35 40 RX2B 10 7 RX10A 35 40 RX10B

11 24 RX3A 36 8 RX3B 11 24 RX11A 36 8 RX11B

12 41 RX4A 37 25 RX4B 12 41 RX12A 37 25 RX12B

13 9 RX5A 38 42 RX5B 13 9 RX13A 38 42 RX13B

14 26 RX6A 39 10 RX6B 14 26 RX14A 39 10 RX14B

15 43 RX7A 40 27 RX7B 15 43 RX15A 40 27 RX15B

16 11 RX8A 41 44 RX8B 16 11 RX16A2 41 44 RX16B2

17 28 Ground 1 42 12 Ground 1 17 28 Ground 1 42 12 Ground 1

18 45 IRIGRX+ 43 29 IRIGRX- 18 45 IRIGRX+ 43 29 IRIGRX-

19 13 IRIGTX 44 46 Ground 19 13 IRIGTX 44 46 Ground

20 30 Ground 1 45 14 Ground 1 20 30 Ground 1 45 14 Ground 1

21 47 Ground 1 46 31 Ground 1 21 47 Ground 1 46 31 Ground

22 15 Discrete IO 1 47 48 Discrete IO 2 22 15 Discrete IO 9 47 48 Discrete IO 10

23 32 Discrete IO 3 48 16 Discrete IO 4 23 32 Discrete IO 11 48 16 Discrete IO 12

RAR-CPCI I/0 Connections

CEI-x30 User's Manual 63

P1 Connector P2 Connector
Pin D50 Signal Pin D50 Signal Pin D50 Signal Pin D50 Signal
24 49 Discrete IO 5 49 33 Discrete IO 6 24 49 Discrete IO 13 49 33 Discrete IO 14

25 17 Discrete IO 7 50 50 Discrete IO 8 25 17 Discrete IO 15 50 50 Discrete IO 16

1 The ground pins are provided as Discrete I/O return lines or for
shielding, as required.

2 The ARINC 573/717 signals are supported on the respective
channel 16 pins for both the BPRZ and HBP protocols. The
selected protocol processed is based on the selection of the ARINC
717 HBP and BPRZ Encoding bits in the respective Transmit
Channel Configuration register. See the API routine
AR_SET_573_CONFIG for the method to define the ARINC 573/717
active encoding selection for this output pin.

Table 57. RAR-CPCI Rear Panel Input/Output Connector Definition

 Row a Row b Row c Row d Row e
1 TX9B TX9A TX1B TX1A
2 TX10B TX10A TX2B TX2A
3 TX11B TX11A TX3B TX3A
4 TX12B TX12A TX4B TX4A
5 TX13B TX13A TX5B TX5A
6 TX14B TX14A TX6B TX6A
7 TX15B TX15A TX7B TX7A
8 TX16B TX16A TX8B TX8A
9 RX9B RX9A RX1B RX1A
10 RX10B RX10A RX2B RX2A
11 RX11B RX11A RX3B RX3A
12 Ground 1 RX12B RX12A RX4B RX4A
13 IRIGTX RX13B RX13A RX5B RX5A
14 IRIGRX- RX14B RX14A RX6B RX6A
15 IRIGRX+ RX15B RX15A RX7B RX7A
16 RX16B RX16A RX8B RX8A
17
18
19 Discrete IO 13
20 Discrete IO 14 Discrete IO 10 Discrete IO 7 Discrete IO 4 Discrete IO 1
21 Discrete IO 15 Discrete IO 11 Discrete IO 8 Discrete IO 5 Discrete IO 2
22 Discrete IO 16 Discrete IO 12 Discrete IO 9 Discrete IO 6 Discrete IO 3

Notes:

I/0 Connections RAR-CPCI

64 CEI-x30 User's Manual

1 Per the compact PCI specification, row “A” is closest to the edge of
the circuit board and Row “E” is furthest from the edge of the circuit
board.

2 The ground pins are provided as Discrete I/O return lines or for
shielding, as required.

IRIG-B Signal Connections
IRIG-B time (AM or DC/TTL) may be received via signals IRIGRX+ and
IRIGRX-. The following IRIG formats are accepted:

Table 58. IRIG Signal Connections

Format Modulation
Frequency

Frequency/
Resolution

Coded
Expressions

B 0, 1 0, 2 0, 1, 2, 3

On completion of the program load, the RAR-CPCI initiates IRIG B002
(DC/TTL) transmission from the onboard IRIG encoder via the IRIGTX
signal. The IRIGTX signal can source/sink 16 mA at valid TTL levels.

To externally wrap the IRIG generator to the IRIG receiver, connect the
IRIGTX signal to IRIGRX+ input, and connect the IRIGRX- input to
Ground.

Notes:

CEI-x30 User's Manual 65

CHAPTER 10

Windows Installation

Software Installation for Windows
Although system resources may limit the number of boards installed on a
system, the CEI-x30-SW distribution supports up to sixteen devices when
installed under 32-bit and 64-bit versions of the Windows 7, Vista, XP,
2000, and NT operating systems. Windows 9x installations are limited to
ten devices.

Prior to physically installing the CEI-x30 product, the CEI-x30-SW
software distribution must be installed on your PC. Failure to properly
install the software prior to the hardware may result in corruption of the
Windows Device Manager Registry settings and require restoration to a
previous configuration.

To install the software, follow these steps:

1. Exit all programs.

2. Insert the CEI-x30-SW CD into your CD drive.

3. If the installation does not automatically start after 10 seconds:

• Click Start from the Windows Task Bar and select Run.

• Use the Browse button to locate the Setup.exe file in the
Setup\Disk1 folder.

• Double-click the file Setup.Exe. Then, click OK to launch the
setup program.

4. Follow the on-screen instructions for the installation.

5. Note which device number is allocated during the installation.

6. Following successful completion of the installation, turn off the
computer.

Hardware Installation Windows Installation

66 CEI-x30 User's Manual

Hardware Installation
Once the software has been successfully installed, follow these steps to
install the hardware and Windows device driver:

With the computer powered off, install the CEI-x30 product into any
available slot, PMC site, or PC/104-Plus stack location. The CEI-430
requires card jumpers to agree with the installed stack location. Refer to
Chapter 2 for applicable jumper settings.

Hardware Installation with Windows 7/Vista/XP/2000/9x
To install the hardware under these Windows operating systems, follow
these steps:

1. Power-up the PC.

Windows 7 device installation should occur automatically; for other
Windows versions, the Windows Plug and Play hardware manager
should detect the CEI-x30 device, and the Found New Hardware
dialog box should automatically startup. Decline any request to query
the Microsoft web site to obtain drivers for this device.

• For Windows XP, select the Install the software automatically
option and click Next. Under the Completing the Found New
Hardware dialog, click Finish.

• For Windows Vista, select the Locate and install driver software
(recommended) option and click Next. Under the Completing the
Found New Hardware dialog, click Finish.

• For Windows 2000 the Install hardware device drivers dialog will
be displayed, select the "Display a list of known drivers..." option
and click Next. Under the Select a device driver dialog, the
hardware you are installing should appear in the Models window.
Select the device you are installing and click Next. Under the
Completing the Found New Hardware dialog, click Finish.

• For Windows Me/98/95, Windows should then display the
Building Driver Information Database dialog for the CEI-x30
DevX, followed by the System Settings Change dialog. If you are
prompted, click Yes to the request to restart your computer,
(Windows XP/2000 does not prompt for a restart).

2. If Windows does not detect the new hardware, you must manually
install the device driver:

• Click Start and point to Settings.

• Select the Control Panel.

• Select Add New Hardware.

Windows Installation Hardware Installation

CEI-x30 User's Manual 67

3. If the device drivers aren’t automatically detected and you are
prompted for a path to the driver location, enter C:\Windows\Inf and
click OK.

4. To check for proper driver installation under Windows 7, Vista, XP,
and 2000, open the Device Manager as follows:

• From the “Start->Run” command prompt, enter “devmgmt.msc” to
open the Windows Device Manager.

• Expand the GE Avionics Devices folder (or Condor Engineering
Devices folder for older installations).

5. To check for proper driver installation on any older Windows version
such as ME/98/95, open the Device Manager as follows:

• Right mouse click on the My Computer Desktop icon:

• Select Properties from the menu to open the System Properties
window.

• Select the Device Manager tab, scroll down to, and expand the
WinRT folder.

6. Verify the device entry Product Name for your device is shown with
no exclamation point overlaying the icon. If this is true, the device
driver was properly installed. You have completed installation of the
hardware.

Hardware Installation with Windows NT 4.0
To continue installing the hardware under Windows NT 4.0, follow these
steps:

1. Power-up the PC. The device driver should be loaded automatically on
power-up.

2. To check for proper driver installation, verify that the device driver
WinRT appears in both the IRQ and Memory resource windows with
the appropriate IRQ and address range assignments.

Installation Verification
To verify the device driver is properly installed, execute the Test
Configuration program.

1. Click Start, and then Programs.

2. Select the GE CEI-x30-SW program group and click on the Test
Configuration shortcut.

This program executes an internal wrap test on all available channels
and notifies you of success or failure. If the program reports success
on all channels tested, you are ready to use your new board.

CEI-x30 User's Manual 68

CHAPTER 11

VxWorks Installation

Overview
VxWorks is an embedded real-time operating system supporting flexible
hardware configurations. The CEI-830 API compiles and runs under the
Motorola PowerPC and Intel x86 VxWorks Board Support Packages.

The CEI-x30-SW API supports up to eight boards on a single VxWorks
host, using device numbers 0-7 to designate the device. VxWorks assigns
the device numbers based on the order it encounters the devices on the bus.
The first device is device 0, the next device is 1, and so on. If you have
only a single board in your system, it is always device 0. Use this value
when programming using the supplied API.

To use the CEI-x30-SW API with VxWorks you must first build a
VxWorks image supporting the respective CEI-x30 board configuration.
Upon boot of this image, you may download and execute the client
application. These basic steps are described in this chapter.

Building a VxWorks Image
To incorporate your CEI-x30 API with VxWorks you must rebuild your
VxWorks image. The procedure provided for including the CEI-x30 API
in your VxWorks image utilizes the VxWorks Component Installation
method, and applies to both Tornado and Workbench development
environments. Since these methods differ greatly, these instructions are
written in a generic fashion and must be interpreted for your environment:

1. To install the generic GE Avionics common VxWorks driver source
code for an Intel-based target, use the configuration definition file
51_GEFES_x86_RTP_PCI.cdf.; for a PowerPC-based product, use the
file 51_GEFES_PPC_RTP_PCI.cdf. Copy the respective file from the
folder \Program Files\Condor Engineering\CEI-x30-

VxWorks Installation Building a VxWorks Image

CEI-x30 User's Manual 69

SW\Source\VxWorks to
[Tornado_directory_path]\target\config\comps\vxWorks.

2. Copy the following source files from the folder \Program Files\Condor
Engineering\CEI-x30-SW\Source\VxWorks to either folder
[Tornado_directory_path]\target\config\<BSP Folder> or
[Tornado_directory_path]\target\config\comps\src:

cei_types.h
CondorVxWRTPDrv.c
CondorVxWRTPDrv.h
gefes_ioctl.h
lowlevel.h
target_defines.h

3. You may choose to include the CEI-x30-SW API source files in the
BSP kernel source folder, create a new project folder for the CEI-x30
API and application development, or reference the distribution
installation Source and Include folders. If you are not using the
distribution folder, copy the following two API source files from the
folder \Program Files\Condor Engineering\CEI-x30-SW\Source to the
folder of your choice:

cdev_api.c cdev_vxw.c

4. If you choose not to reference the Include folder in your compilation
Include Path, copy the following C header files from the folder
\Program Files\Condor Engineering\CEI-x30-SW\Include to that same
folder:

ar_error.h cdev_api.h cdev_fw.h
cdev_glb.h cdev_hw.h fpga430.h
fpga530.h fpga630.h fpga830.h
fpga830rx.h fpga_ec.h fpgaA30.h
fpgax30n.h cei_types.h target_defines.h

5. Open the workspace containing your VxWorks target image project,
and access the Kernel Configuration setup for the VxWorks image.

6. Beneath the hardware component, right-click the “GE Intelligent
Platforms Avionics Products” component and select Include (quick
include).

7. Modify the default values for any definitions as required for your
target system. Examples of such modifications include:

• For x86/Pentium kernel images for any VxWorks version prior to
6.6, change the default state of. “Adds device memory into the
sysPhysMemDesc table” to TRUE.

• To modify the maximum number of overall GE Avionics boards
supported in a system, change the value of “Defines the maximum

Using the Sample Program VxWorks Installation

70 CEI-x30 User's Manual

number of devices” to the desired number, up to a maximum
number of 16.

8. If you choose to build the API outside of the BSP source folder, you
will have to manually define the directive VXW_PCI_X86 for an
x86/Pentium target C source compilation/build or the directive
VXW_PCI_PPC for a PowerPC target C source compilation/build,
(normally defined in the configuration definition file).

9. Once you have your VxWorks kernel image built and installed on your
target, open a shell to the target and invoke the function
geipBoardShow. This routine lists all detected GE Avionics products
in the device ID order that should be referenced from your application
for the respective boards.

See the section, “Target-specific Compiler Directives” for more
information on the various ways to customize the CEI-x30 API for your
target BSP.

BIOS Initialization
The installation process assumes that the x86 BIOS configures PCI-based
boards by writing the base memory address into the board’s configuration
space. If your BIOS initialization doesn’t do this, you need to write the
base memory address into the appropriate PCI configuration registers prior
to calling “gefesInitPCI”. For more information on PCI and VxWorks, see
“The Peripheral Component Interconnect (PCI) Bus and VxWorks” WTN-
49 at:

http://www.wrs.com/csdocs/product/t2/technote/WTN49.pdf

Using the Sample Program
The CEI-x30 API distribution includes an example program named
TST_CNFG.C. The source code is located within the Windows
distribution Source folder or on the distribution disk in the CEI-x30-
SW\Source directory. You can use this program to test your VxWorks
installation, as it simply executes an internal wrap on all receiver-
transmitter channel pairs. You can also use TST_CNFG.C as a guide for
programming with the CEI-x30 API.

Building the API and Sample Program with Tornado
The API and sample program are built as a downloadable object and
application within Tornado. The following steps explain how to build the

http://www.wrs.com/csdocs/product/t2/technote/WTN49.pdf

VxWorks Installation Building the API and Sample Program with Tornado

CEI-x30 User's Manual 71

sample program for a PowerPC 604 target using Tornado 2.2, but can be
easily adapted to Workbench, as well as other targets.

1. Create a new downloadable application project.

2. Fill out the project name, location, and workspace. Click Next.

3. Select the desired tool chain. For this example, we’ll choose

PPC604gnu. Click Next.

Building the API and Sample Program with Tornado VxWorks Installation

72 CEI-x30 User's Manual

4. Verify the project, Workspace, and tool chain selections in the next
window. Click Finish.

5. Right-click the project and select Add Files….

6. If you are only building the CEI-x30 API object, add the files

CDEV_API.C and CDEV_VXW.C from the folder \Program

VxWorks Installation Building the API and Sample Program with Tornado

CEI-x30 User's Manual 73

Files\Condor Engineering\CEI-x30-SW\Source to the project. If you
wish to include the CEI-x30 Test Configuration program as part of the
object, also include TST_CNFG.C in the source file list.

7. Click the Builds tab in the Workspace window. Right-click the build
specification (PPC604gnu, in this case), and select Properties.

8. Select the C/C++ compiler tab and click on the “Include paths…”

button. Now click on the “Add…” button and browse to the Include
folder beneath where the CEI-x30-SW distribution is installed. Next
define the constants required for your target. For example, you would
add -DVXW_PCI_PPC to define the directive VXW_PCI_PPC for a
PowerPC target. Click OK to close the build properties window.

9. Right-click the build specification and select Rebuild All….

10. Run the dependency checker if prompted.

Target-specific Compiler Directives VxWorks Installation

74 CEI-x30 User's Manual

The Build Output window should appear and indicate a successful
build.

11. Assuming you have already connected to the target via target server,
right-click the build specification and select Download to download
the output file you created.

12. If you included the CEI-x30 Test Configuration program as part of the
object, open a shell to the target via the Launch Shell button on the
toolbar and from the shell prompt, type wrap.

This program executes an internal wrap test on all available channels
and notifies you of success or failure. If the program reports success
on all channels tested, you are ready to use your new board.

Target-specific Compiler Directives
The CEI-x30 API accounts for specific target requirements using
compilation directives. There are a few directives that may be required for
the board-specific VxWorks support provided with your target. Two
alternatives to the standard taskDelay method to pause execution are
provided for select board support packages, sysUsDelay and sysMsDelay.
There are also differing methods required to map a CEI-x30 board’s PCI
memory regions, sysMmuMapAdd, sysPciMemToLocalAdrs and
sysBusToLocalAdrs. You should determine the specific requirements for
your target BSP and take the appropriate action prior to building the CEI-
x30 API into your system.

The following compiler directives are defined to include both general and
specific features required for compiling for various VxWorks target BSPs:

VXW_PCI_PPC required for all VxWorks
PowerPC targets

VXW_PCI_X86 required for all VxWorks
x86/Pentium targets

NON_INTEL_WORD_ORDER defines a Big Endian mapped
target (typical for PowerPC).

DELAY_USE_SYS_US_DELAY required when a delay should be
implemented with sysUsDelay
instead of taskDelay (applies to
some Thales VMPC* targets).

DELAY_USE_SYS_MS_DELAY required when a delay should be
implemented with sysMsDelay
instead of taskDelay (applies to
some Motorola MCP* targets).

VXW_SYS_BUS_MAP required when execution of the
routine sysBusToLocalAdrs
should be used to map PCI BARs

VxWorks Installation Target-specific Compiler Directives

CEI-x30 User's Manual 75

(applies to some Thales VMPC*
and Motorola MCP* targets).

VXW_SYS_PCI_MAP required when execution of the
routine sysPciMemToLocalAdrs
should be used to map PCI BARs
(applies to some Thales VMPC*
targets).

NO_INT64 required if the VxWorks Kernel
version or BSP does not provide
support for the 64-bit integer data
type.

TARGET_EMBEDDED bypasses parameter checking
source lines during compilation.
This can be defined for any
embedded application towards the
end of the integration phase to
improve API routine throughput.

CEI-x30 User's Manual 76

CHAPTER 12

Linux Installation

Overview
CEI-x30-SW provides support for all CEI-x30 products under most Linux
Kernel 2.6 revisions. The install process builds the API as a shared library
and installs the driver as a module. Application programs link with the
shared library to access the respective device. Up to eight boards can be
installed under supported Linux distributions. Refer to the files
Linux_support.txt and Linux_install.txt located in the Linux distribution
file for the latest information on installing and building the common driver
along with the CEI-x30 API and example program.

Software Installation
The Linux installation process requires your CEI-x30 hardware be installed
prior to execution of the installation:

1. You must log on as "root" (you may use "su")

2. Copy the Linux distribution compressed tar file (linux_x30_vnnn.tgz)
to the /root directory.

3. Uncompress and extract the installation file using the following:

 tar -zxvf linux_x30_vnnn.tgz

After the tarball extraction completes, the following directory structure will
be created:

Linux Installation Building Applications

CEI-x30 User's Manual 77

Building Applications

Automatic Installation (Builds LSP and API)
Navigate to the Install directory and run the installation script by typing

 ./install

The PCI device driver builds and loads if the installation script detects a
GE Intelligent Platforms Embedded Systems avionics PCI board in the
"procfs" file system. If the system does not have a "proc" file system,
perform a manual install of the device driver.

These are the configuration arguments that are accepted by the "install"
script:

1. To remove support for SYSFS (the SYS file system), include
"no_sysfs" in the "./install" command line. If the system does not have
the SYS file system or is based on kernel 2.6.10+ and does not agree
with the "Proprietary/GPL" license, then SYSFS support must be
removed.

2. To debug the kernel device driver(s), include the option
"debug_drv=<DEBUG LEVEL>" in the "./install" command line. The
debug statements will be printed out to the kernel message log. The
<DEBUG LEVEL> provides increasing debug information with a
range of "0" (none) to "3" (all).

3. To debug the low level library, include "debug_ll" in the "./install"
command line. The debug statements will be printed to stdout.

4. To build only the device drivers and libraries, include "no_install" in
the "./install" command line. If support for SYSFS has been removed,
the "ceidev.conf" will not be generated. Need to follow the instructions
that are displayed on the screen during the installation. Refer to
Linux_install.txt in your distribution, sub-section 4 in the section
"Manual Install" concerning the "ceidev.conf" file.

Linux Driver Operation Linux Installation

78 CEI-x30 User's Manual

5. To build the low-level and API libraries as 32-bit libraries to run in 32-
bit emulation mode for 64-bit systems, include "32bit" in the "./install"
command line.

6. To disable hardware interrupt support in the kernel 2.6 PCI/ISA
drivers, include "no_hwint" in the "./install" command line.

7. To disable using POSIX RT signals in the kernel 2.6 PCI/ISA drivers,
include "no_hwint_signal" in the "./install" command line.

8. To disable using a "wait queue" for the kernel 2.6 PCI driver, include
"no_hwint_waitqueue" in the "./install" command line.

The installation is finished. Check the "install" script output and the kernel
message log for any errors. If there are no errors then the device driver(s)
are loaded into the kernel, the low-level library is built as well as all
detected API(s) distributions.

The installation installs the driver, builds and installs the API, (including
the Linux common low-level interface), and compiles the example
program. To test the installation, navigate to the Examples directory and
execute the tst_cnfg application.

Manual Installation
Refer to the file Linux_install.txt in your distribution, section "Manual
Install" concerning the manual installation of the Linux distribution and/or
driver.

Linux Driver Operation
Linux compiles drivers as modules that dynamically link with the Linux
kernel. The installation script automatically compiles the correct driver for
the boards you are installing and the Linux kernel version. You can
recompile using one of the Make files in the /Drivers/kernel/pci directory,
where kernel is either 2.4 or 2.6. The module installation script load_pci is
supplied in the Driver folder, which loads the module. You can manually
load the driver by typing ”./load_pci”, and unload the driver by typing
“./unload_pci”.

Installation automatically invokes the driver load script. However, if you
reboot the system you need to re-execute this script. You can put the script
in the rc.local initialization file, which should automatically execute on
power-up. The installation instructions located in the distribution file
Linux_Install.txt explain how to manually execute the script.

Linux Installation Troubleshooting

CEI-x30 User's Manual 79

Troubleshooting
When installing any API distribution, you will need to be logged on as
"root". Use the "su" command to gain "root" permissions. Root
permissions are necessary when building device drivers and loading the
modules into the kernel.

Useful Linux system utilities
dmesg: displays the kernel message log.

lsmod: displays the current modules loaded in the kernel.

lspci displays the PCI config space for all PCI devices

strace: displays the system calls that the driver or application calls.

gdb: the GNU debugger.

modinfo: displays the module information for a driver.

Compilation Errors
If there are compilation errors, check that the path to the kernel headers is
valid. If different than the default ("/lib/modules/<KERNEL>/build"),
include the path in the applicable driver's makefile by including a "-I" with
the path. If there are system calls that cannot be resolved, check the
"/proc/kallsyms" file to verify that they are compiled into the kernel.

Run-time Errors
Run-time error resolution may involve one or more of the following:

1. Check that the device driver, uceipci, is loaded with "lsmod".

2. Examine the kernel message log for error output from the device driver
uceipci. Use "dmesg" and/or look directed at the kernel message log
located in "/var/log/messages".

3. If there are version errors when loading the driver, the driver's version
string (magic) may not coincide with current running kernel. Use
"modinfo" to get the driver's magic number. Refer to the
"/usr/src/linux/makefile" and "/usr/src/linux/.config".

Troubleshooting Linux Installation

80 CEI-x30 User's Manual

4. To determine where an error may be occurring in the application or
API libraries use "gdb". Make sure when compiling to provide the "-
g" to GCC.

5. If a device driver fails to unload with "modprobe", use "rmmod".

6. If loading the 2.6 PCI device driver and receive errors indicating
missing symbols with "sysfs" in the symbol name, then build the
distribution without support for SYSFS.

CEI-x30 User's Manual 81

CHAPTER 13

Integrity® Support

Introduction
Green Hills Integrity is a secure, high-reliability real-time operating system
(RTOS) intended for use in mission critical systems. The CEI-x30-SW
distribution supports up to two CEI-830 devices with Integrity on
PowerPC processors.

Integrity is flexible in how it builds the kernel and application software.
You can build a monolith containing the kernel, BSP, and application
software, or you can build a separate kernel/BSP and the application as a
Dynamic Download. This Integrity distribution supports either method.
This distribution provides the Integrity PCI driver source file, API source
files, and an example application source file. You must compile and link
the API to form a static library, which can then be linked with your
application to achieve support for the CEI-830.

Integrity Installation
There are two options for installing CEI-x30-SW support for Integrity. If
you are running the Multi IDE on a Windows system, you can install using
the Windows installation and select the Source installation only for
VxWorks/Integrity option at the Target Installation selection prompt. You
can also copy the desired folders directly from the Installation CD-ROM.
The installation contains the GE Intelligent Platforms Embedded Systems
Avionics Integrity PCI driver, the source code for the API and driver
interface, the API compiled as a static library for most PowerPC
processors, the Example program, and documentation.

After installing your CEI-830, you need to copy the PCI device driver
source into the integrity BSP project for your target systems and rebuild
the kernel. The GE Intelligent Platforms Embedded Systems Avionics
Integrity driver works with most PowerPC BSPs. You can build your

Integrity Installation Integrity® Support

82 CEI-x30 User's Manual

application using the static library supplied or create your own static
library project.

Integrity PCI Driver Installation
You must install the PCI device driver as part of the BSP project in the
default.gpj. The driver is a C file named cei_int_pci_drv.c that is BSP
independent. Add that file into the libbsp.gpj project. Figure 27 shows the
driver file installed in a Dy4 DMV181 project. To add the file, right-click
the libbsp.gpj line and select the Add File Into libbsp.gpj option.

Figure 27. Integrity libbsp.gpj with cei_int_pci_drv.c Added

Building Integrity Applications
Once the PCI device driver has been built as part of the kernel, you are
ready to build your application program.

The distribution includes the static API libraries for the CEI-x30 products
named libceix30_api.a and libceix30_api_k.a; lib ceix30_api_k.a is built
for use with monolith applications built into the kernel. If you are building
a dynamic download, use libceix30_api.a. The figure below shows a
typical Dynamic Download project using the CEI-x30 API library.

Integrity® Support Integrity Installation

CEI-x30 User's Manual 83

Figure 28. Example CEI-830 Integrity Application Project Setup

Build the application using the following steps:

1. Define the preprocessor symbol INTERGITY_PCI_PPC.

2. Link with either the libceix30_api.a (-llibceix30_api) or
libceix30_api_k.a (-llibceix30_api_k) and include libposix.a and
libsocket.a. You should review the Integrity POSIX chapter to make
sure this POSIX option meets your application’s needs.

Figure 29. Example CEI-830 Integrity Application Project Option

3. Add sufficient MemoryPoolSize to create POSIX threads.

The example below uses 0x1000000, but your application may need
more. Add the MemoryPoolSize entry between the Filename and
Language entries in the Integrate file options.

Integrity Installation Integrity® Support

84 CEI-x30 User's Manual

Figure 30. Adding a MemoryPoolSize Entry

4. Build the project, then download and run your application. If you
desire the application to execute upon download, modify the value for
the DefaultStartIt attribute to be “true” as follows:

Figure 31. Modifying the Value for the DefaultStartIt Attribute

Integrity® Support Integrity Installation

CEI-x30 User's Manual 85

5. If you want to build a monolith project that includes both the kernel
and application, add your application code into the project and link
with the CEI-x30 API library following the steps outlined above.

 Building the CEI-x30 API with Multi
The CEI-x30-SW Integrity Distribution contains a static library built for a
generic PowerPC, which should suffice for most PowerPC systems. You
can choose to rebuild this static library to customize API operation for your
system. You may build a static library with the supplied source and
include files using the following steps. Use the following source files:

 cdev_api.c
 cdev_int.c
 mem_integrity.c

The following list shows the include files (.h) needed to build the API.

ar_error.h cdev_api.h cdev_fw.h
cdev_glb.h cdev_hw.h fpga830.h
fpgax30n.h cei_types.h lowlevel.h

The preprocessor symbol INTEGRITY_PCI_PPC selects the Integrity
target compilation in the source files.
Select a stand-alone project for a generic PowerPC. Select a PowerPC
option matching your system.
For Project Type, select Library (empty). You can then add the C source
files to the project and add the path to the include files.

Figure 32. Example CEI-830 Integrity Library Project Setup

Define the pre-processor symbol INTEGRITY_PCI_PPC and
NON_INTEL_WORD_ORDER (required if your Integrity BSP does not
automatically handle Endian byte swapping). If you are building a library

Integrity Installation Integrity® Support

86 CEI-x30 User's Manual

to run in a Monolith, you also need to define the symbol GHS_KERNEL.
You can name the output library to anything and use that to link with your
application(s).

Figure 33. Example CEI-830 Integrity Library Project Options

CEI-x30 User's Manual 87

CHAPTER 14

CEI-x30 Features

Overview
The CEI-x30 products provide specialized features for receive message
storage and time-tagging, timer usage, and transmit message scheduling.
The following paragraphs document several of these features, and how
they might be used in your ARINC application.

Enhanced CEI-x30 Interface
Beginning with the release of CEI-x30-SW Version 2.00, all CEI-x30
products provide enhanced features, including full exposure of all channel
register sets to the host PCI interface, time-stamped Snapshot Buffer
message storage, and Filter Table triggered hardware interrupt support.
This enhanced feature set includes a larger firmware host interface,
requiring a modification to the default PCI BAR2 memory definition
stored in an onboard EEPROM. The process by which an existing CEI-
x30 device EEPROM BAR2 size attribute is modified is handled via
AR_SET_DEVICE_CONFIG invocation with the item parameter
ARU_HW_ENHANCE_UPDATE.

ARINC 429 Protocol Support
Several aspects of the ARINC 429 protocol are handled by the CEI-x30
products.

The electrical transmission of ARINC 429 data over the bus is performed
with the label field in reverse bit order. The transmit logic of the CEI-x30
product automatically reverses the bit order of the ARINC 429 message
label B0-B7) prior to transmission. The receiver logic of the CEI-x30 also
reverses the bit order of the ARINC 429 message label prior to placing the
data in the respective receive buffers. This ARINC 429 label modification

ARINC 573/717 Protocol Support CEI-x30 Features

88 CEI-x30 User's Manual

is fixed in the CEI-x30 processing and cannot be modified by the
application. For more information on the ARINC 429 protocol, see the
“ARINC 429 Protocol Tutorial”.

ARINC 429 message parity is defined in the MSB of the ARINC 429
message. The CEI-x30 transmission logic provides the capability to
generate either odd or even parity based on the bit states of the first 31 bits
of the ARINC 429 message. When disabled, the transmitter logic transmits
the ARINC 429 message with the parity bit unaltered. When enabled, the
CEI-x30 product overwrites the value of the parity bit in the 32-bit user-
defined message with the calculated parity value.

The CEI-x30 reception logic provides the capability to detect the parity of
ARINC 429 messages based on the bit states of each message. When
disabled, the receiver logic provides the received ARINC 429 as it was
received, (without modification). If enabled, the receiver logic modifies
the state of the parity bit (B32) to be “0” if the parity was detected as odd
and “1” if the parity was detected to be even.

The bus speed for both ARINC 429 transmission and reception may be
programmed to any baud rate from 3.9Kbps to 800Kbps; however, the
slew rate doesn’t provide for a good signal beyond 150Kbps.

The API routine AR_SET_DEVICE_CONFIG provides the method to set
the transmit and receive channel bus speed and parity options for your
device.

ARINC 429 Transmit Tri-state Support
Some CEI-x30 products have the capability to tri-state the output of
transmit channels. Currently, only the RAR-PCIE has this capability. See
chapters 15 and 16 for a description of how to use this feature.

ARINC 573/717 Protocol Support
Several aspects of the ARINC 573/717 HBP and BPRZ protocols are
handled by the CEI-x30 products.

The electrical transmission of ARINC 573/717 data over the bus is
performed at various bus speed/sub-frame size combinations resulting in
the standard four-second frame duration. Each frame consists of four sub-
frames comprised of a sub-frame sync word and subsequent data words.
Each sync and data word is 12 bits long, transmitted in LSB-MSB order.

The transmit logic of a CEI-x30 board relies on the application to supply
the frame data in a 16-bit unsigned integer array in which only the lower
12 bits of each 16-bit element are used. The application must supply the

CEI-x30 Features CEI-x30 Timers

CEI-x30 User's Manual 89

applicable sub-frame sync words and data in the respective locations within
this array for proper frame transmission.

The receiver logic of a CEI-x30 board supports both raw and auto-
synchronized frame data reception. With raw data frame data reception,
the data captured and provided to the application is organized in the least
significant 12-bits of each element of a 16-bit unsigned integer array, based
on the first detected bit transition. With auto-synchronized frame data
reception, four application-provided sub-frame sync words are used by the
CEI-x30 ARINC 717 receive logic to synchronize reception and data
logging to a detected sub-frame sequence. The sub-frame detection is
based both on the provided sub-frame sync word bit patterns and the
specified sub-frame size.

The API routine AR_SET_573_CONFIG provides the method to set
transmit and receive channel bus speed and frame size options for your
device.

CEI-x30 Timers
The CEI-x30 products support two independent timers, a 64-bit one-
microsecond timer and an optional IRIG timer. The one-microsecond
timer is utilized for all ARINC 429 receive message time-tagging. It can
be assigned to any 64-bit value by the host at any time.

Specified in microseconds from January 1st of the current year, received
IRIG time is based on an external IRIG reference connected to the IRIG
input of the CEI-x30 device (see the section, “IRIG B Signal Connections”
for the procedure to connect the CEI-x30” device to the IRIG source). If
the IRIG time reference is desired, but no external IRIG source is available,
the CEI-x30 IRIG generator may be internally wrapped and used as the
time source (see the ARU_IRIG_WRAP_ENABLE option of
AR_SET_CONFIG); however, if the CEI-x30 IRIG generator is to be used
by other data collection hardware in your system, it is best to externally
connect the CEI-x30 IRIG output to its IRIG input. The CEI-x30 IRIG
generator can be reset by the host application to any desired value using the
standard IRIG time format, (see AR_SET_TIME).

A user-programmable compensation to the CEI-x30 IRIG time value can
be defined when a consistent offset to the IRIG source time value is
desired. This compensation should be used when a consistent skew in
IRIG time-tagging is encountered between ARINC 429 events occurring
on the CEI-x30 and other IRIG time-tagged components in your system.
This offset can be specified via the ARU_IRIG_SET_BIAS option of
AR_SET_CONFIG.

An IRIG DAC threshold adjustment procedure is provided that configures
the CEI-x30 device IRIG receiver for optimal signal reception. This

Receive Message Time-tagging and Timer Usage CEI-x30 Features

90 CEI-x30 User's Manual

procedure is usually not necessary; however, it may be required if IRIG
timing appears unstable from a known good source.

First, test the stability of the IRIG signal by invoking AR_GET_CONFIG
with the option ARU_IRIG_CALIBRATED. If this invocation returns a
FALSE status, the adjustment should be invoked through use of the
AR_SET_CONFIG routine with the
ARU_IRIG_QUICK_ADJUSTMENT option. If the quick DAC
adjustment is not successful, a more thorough adjustment may be
performed. This adjustment is invoked through the
ARU_IRIG_ADJUST_THRESHOLD option of the AR_SET_CONFIG
routine. Execution of this IRIG adjustment may require at least one minute
and should be performed only during the initialization of the board.

In addition to IRIG reception, CEI-x30 products can be configured to
generate IRIG time using on-board IRIG circuitry. The transmitted IRIG
time value is initialized to the host calendar time by the API, and can be
modified by the host application via AR_SET_TIME.

Receive Message Time-tagging and Timer Usage
The CEI-x30 products time-stamp ARINC 429 received messages in the
respective receive buffer and in the snapshot buffer (with label-only
snapshot storage enabled), with a 64-bit one-microsecond time-tag. This
time-tag value is based on the on-board timer, recorded when the last bit of
the 32-bit message is detected. The CEI-x30 API supports multiple time-
tag reference methods based on this one-microsecond timer. The active
timer reference mode may be assigned by the host application by invoking
the API routine AR_SET_CONFIG, using the
ARU_RX_TIMETAG_MODE option and the selections discussed below.
This assignment determines the format of the timer/time-tag value returned
from all API invocations providing time-related information.

The following receive message time-tag and timer-read reference modes
are available for selection:

IRIG 64-Bit Time Reference
This time reference is based on the CEI-x30 IRIG receiver, with the one-
second resolution extrapolated by the one-microsecond internal timer to
provide an estimated one-microsecond IRIG reference value. When the
IRIG time reference is selected, all legacy receive data API routines based
on a 32-bit time-tag parameter return a time-tag value with a resolution of
one millisecond; while all receive data API routines supporting a 64-bit
time-tag will return an IRIG timer-based time-tag.

CEI-x30 Features Receive Message Time-tagging and Timer Usage

CEI-x30 User's Manual 91

The CEI-x30 device records the internal timer value when the IRIG signal
is received and decoded, (referred to as IRIG Reference Time). The API
then calculates the offset between the IRIG Reference Time and the
received ARINC data time-tag. Finally, the API applies that offset to the
IRIG signal time value to produce an IRIG-reference message time stamp
for the received data, extrapolated to provide the 1 microsecond resolution.

Internal 64-Bit One Microsecond Time Reference
This time reference is based on the CEI-x30 device one-microsecond timer.
When this mode is active, all legacy receive data API routines based on a
32-bit time-tag and all routines based on a 64-bit time-tag return a time-tag
value with a resolution of one microsecond. The 32-bit time-tag is
returned as the lower 32-bits of the 64-bit time-tag. This internal timer can
be reset by the host application to any value desired, (see
AR_SET_TIME).

Internal 32-Bit Twenty Microsecond Time Reference
This time reference is provided for backward compatibility to applications
designed around the CEI-710 or IP-429HD-based products. When this
mode is active, all legacy receive data API routines based on a 32-bit time-
tag return a time-tag value with a resolution of twenty microseconds; all
receive data API routines based on a single 64-bit time-tag value return a
32-bit value with a resolution of twenty microseconds (the upper 32-bits of
the time-tag is zero).

Internal 32-Bit One Millisecond Time Reference
This time reference is based on a scaled version of the CEI-x30 device one-
microsecond timer. When this mode is active, all legacy receive data API
routines based on a 32-bit time-tag/timer value return a 32-bit value with a
resolution of one millisecond; all receive data API routines based on a 64-
bit time-tag/timer value return a 64-bit value with a resolution of one
millisecond.

CEI-x20 Compatible Time Reference
This time-tag and timer option is not available as a selection via
AR_SET_CONFIG/ ARU_RX_TIMETAG_MODE; instead, this time
reference mode is selected when the CEI-x20 legacy API routine
AR_SET_TIMERRATE is invoked. In this mode, time references are
based on a programmable time-tag resolution specified through
AR_SET_TIMERRATE. When this mode is active, all receive data API
routines return a time-tag/timer value based on either a 32-bit or 64-bit

Receive Message Buffering Methods CEI-x30 Features

92 CEI-x30 User's Manual

value scaled using the application-defined resolution. The message rate
and start offset attributes assigned to scheduled message table entries are
also scaled to the application-defined resolution.

Receive Message Buffering Methods
The CEI-x30 products provide three methods of message storage for
receiving ARINC 429 data.

Individual Circular Buffer Storage
The first storage method is the individual circular buffer, (sometimes
referred to as a sequential or FIFO buffer), in which ARINC 429 messages
are continuously saved in the order in which they are received. Each
receiver can store up to 2048 messages in its individual circular buffer
before overflowing.

Merged Circular Buffer Storage
The second storage method is the merged circular buffer. This buffer
provides for time-based sequentially ordered receive message buffering for
multiple receive channels in a single buffer. Each receiver can be
individually enabled for storage in the merged circular buffer; however,
message storage in the merged buffer is exclusive of the individual receive
buffers. The merged circular buffer can store up to 16384 messages before
overflowing.

It is important to note that once a buffer overflows, all messages previously
contained therein are lost. For this reason, when using either of these
circular buffer storage methods for data retrieval, the host application
should periodically flush the buffers. The API routines AR_GETWORD*,
AR_GETNEXT*, AR_GET_DATA*, and AR_GET_BLOCK* are
provided to support various data retrieval methods for receive circular
buffer storage.

Snapshot Buffer Storage
The third storage method is a snapshot buffer, sometimes referred to as
dedicated storage. Independent of either circular buffer storage method,
snapshot storage records the latest received message for each ARINC 429
Label and optional SDI field value combination on a particular channel.
The API routine AR_SET_ DEVICE _CONFIG should be invoked using
the receive channel attribute ARU_ACCESS_SNAPSHOT_BUFFER to

CEI-x30 Features Interrupts and Triggers

CEI-x30 User's Manual 93

assign the snapshot storage mode based on the label field value alone or the
combined label/SDI field values.

When the snapshot storage mode is set to store messages based on the label
field value alone, a 64-bit one microsecond time-tag is also recorded in the
buffer with each message.

Prior to receiving a message with a specific label/SDI combination, the
table is initialized to zero.

The API routines AR_GET_LATEST (message only) and
AR_GET_LATEST_T (message with time-tag) should be invoked to
retrieve ARINC 429 data from the snapshot buffer when the snapshot
storage mode is set to Label Only; use AR_GET_SNAP_DATA when the
storage mode is set to Label and SDI. Any zero value data retrieved from
this buffer using either routine is an indication that the respective message
has not been received on that channel.

Interrupts and Triggers
There are two interrupt and trigger sources available with the CEI-x30
products. Any event that can cause a trigger can also invoke a hardware
interrupt on the PCI bus. For simplicity of discussion, the term “interrupt
event” applies to both interrupts and triggers for the remainder of this
section regardless of whether or not an actual hardware interrupt is
generated as a result.

The mechanism by which an interrupt event is logged is the interrupt
queue. The interrupt queue is a 2048 entry circular buffer, consisting of a
single 32-bit value for each generated interrupt event. The most recent
entry written to the interrupt queue by the CEI-x30 firmware is indicated
by the interrupt queue head pointer, accessed by reading the Interrupt
Queue Register. The precise numeric definition for the individual interrupt
queue entries is described in the section “Interrupt Queue”, in Chapter 14.

The first type of interrupt event is based on the Receive Label Filter
functionality, described in detail in the next section of this chapter. The
second type of interrupt event is based on host interaction with the device.
Typically used in verification of a custom interrupt service routine, this
type of interrupt is triggered by a host write to the Interrupt Queue Register
in the firmware interface. When a write-access to this register is detected,
an entry value of 255 is written to the next entry in the interrupt queue and
the interrupt queue head pointer value is incremented. You can invoke this
feature using the API routine AR_SET_DEVICE_CONFIG with the item
parameter option ARU_INSERT_INT_Q_ENTRY.

Hardware interrupts passed on to the PCI bus can be enabled or disabled,
independent of the interrupt queue operation. If the INTERRUPT

ARINC 429 Receive Label Filtering and Interrupt Event CEI-x30 Features

94 CEI-x30 User's Manual

ENABLE bit is set to Enabled in the Global Enable Register, an interrupt is
also generated on the PCI bus for each event written to the interrupt queue.
You can set this bit by invoking the API routine,
AR_SET_DEVICE_CONFIG, using the item parameter option
ARU_HW_INTERRUPT_ENABLE.

The CEI-x30 API provides a general interrupt service routine (ISR) for all
hardware interrupt processing. When PCI interrupts are enabled, the
default ISR logs the interrupt entry in an internal API interrupt buffer, for
recall by the API routine, AR_HW_INTERRUPT_BUFFER_READ. The
host application can replace the invocation of the default ISR with an
invocation of a custom host-supplied ISR via the API routine
AR_SET_ISR_FUNCTION. The host may also defer generation of PCI
interrupts and monitor the CEI-x30 device interrupt queue activity via
invocation of the API routine AR_INTERRUPT_QUEUE_READ.

ARINC 429 Receive Label Filtering and Interrupt Event
The CEI-x30 products provide the capability to both filter received ARINC
429 messages from storage in the circular and snapshot buffers, and
generate a PCI interrupt based on matching receive message bit-field
values. The trigger definition for ARINC 429 message filtering and
interrupt generation is based on the combination of matching 8-bit Label
value, 2-bit SDI field value, and 3-bit ESSM field value, with these fields
defined within a 32-bit ARINC 429 message as follows:

eSSM SDI Label
30, 29, 28 9, 8 7, 6, 5, 4, 3, 2, 1, 0

Each receiver contains a separate label filter table section in which the
trigger definition is applied. This table is used by the CEI-x30 firmware to
control storage of received labels to both the circular and snapshot buffers
and generate a PCI interrupt, with each table entry defined via the CEI-x30
API as follows:

These definitions are CEI-x20 API-compatible and do not match the
actual bit definition defined in the CEI-x30 device Label Filter Table.

FILTER_SEQUENTIAL 0x10 If SET filter label from the circular receive buffer
FILTER_SNAPSHOT 0x20 If SET filter label from the snapshot receive buffer
FILTER_INTERRUPT 0x40 If SET insert channel # in the interrupt queue
 and if enabled, generate a PCI interrupt

When buffer filtering has been enabled for a specified Label/SDI/ESSM
combination, messages received with matching bit field values are
discarded for the respective receive buffer until buffer filtering for that
specified message has been disabled. Selection of individual and merged
circular buffer storage is independent of the filter definition, with the
FILTER_SEQUENTIAL option being applied to the buffer based on the
respective receive channel’s active circular buffer storage mode. All label
filtering is disabled for each Label/SDI/ESSM combination by default.

Note:

CEI-x30 Features ARINC 429 Periodic Message Scheduling

CEI-x30 User's Manual 95

When the FILTER_INTERRUPT bit is set for a specified label/SDI/ESSM
combination, any message received containing that combined field value
triggers an entry in the Interrupt Queue. This type of interrupt event is
referred to as a receive interrupt event, with entry values for receivers 1
through 32 ranging from 64 to 95, respectively.

ARINC 429 Periodic Message Scheduling
The CEI-x30 message scheduling feature supports periodic message
transmission of ARINC 429 label data, with a total of 1024 message
entries. It is programmed by writing message and rate information to the
Message Scheduler table, supported by the API routines
AR_DEFINE_MSG and AR_DEFINE_MSG_BLOCK. As a part of the
API initialization of the device, the Message Scheduler table is reset to an
empty state. Once entries are defined by the host application, message
scheduling is enabled by invoking the AR_GO routine.

When enabled, the Message Scheduler queries each table entry on a one
millisecond basis, checking for all messages required for transmission at
that particular millisecond value. The entire table is processed each
millisecond, with the lowest table entry being processed first and highest
table entry last. When invoking AR_STOP or AR_RESET, it is important
to note the scheduler processing responds only to being disabled at the
beginning of a one millisecond epoch. If the scheduler is requested to
disable in the middle of creating scheduled traffic, all of the ARINC words
previously scheduled for that millisecond are loaded into the various
transmit buffers before the scheduler transitions to idle.

The efficiency of the Message Scheduler is based on the number of defined
messages and the frequency at which those messages are transmitted.
While the Message Scheduler feature is designed to be very accurate, there
are ways in which the host application definition of channel-specific
message transmission scenarios may cause deviations in the periodic
transmission of the messages defined therein. The most common deviation
is referred to as message rate skew.

Message Rate Skew
Message rate skew is defined as the characteristic of a scheduled message
appearing on the bus at a rate that is either above or below the defined rate
by a significant percentage. Message rate skew typically occurs when
several different message rates are defined simultaneously on the same
channel, and a majority of these message rates are multiples of the other
message rates. The example below illustrates this situation.

Assuming there are three groups of messages being transmitted at rates of
100 msec (referenced as block A), 200 msec (block B) and 300 msec

ARINC 429 Periodic Message Scheduling CEI-x30 Features

96 CEI-x30 User's Manual

(block C). If messages from each of the different rate groups were defined
in the order of rate priority using same initial starting point of reference,
the transmission of data would be defined as follows:

Time Group
100 A
200 A,B
300 A,C
400 A,B
500 A
600 A,B,C
repeat…

If we assume that each group of messages requires 10 msec to transmit, we
can expand the timeline in more detail as follows:

Time Group
100 A
200 A
210 B
300 A
310 C
400 A
410 B
500 A
600 A
610 B
620 C
700 A
800 A
810 B
900 A
910 C
etc.

The time between the first two occurrences of the 300 msec message group
(block C) is 310 msec. The time between the second and third occurrences
of this group is 290 msec. Message skew like this is unpredictable as the
number of different message rates increases.

The solution to this problem is to use the start offset feature of the message
scheduler, (see the description for AR_DEFINE_MSG). In the next
alternative example, the 300 msec message group was defined with a start
offset of 20 msec (see note below). In this scenario, no message rate skew
would occur, (as shown in the following timeline).

CEI-x30 Features ARINC 429 Periodic Message Scheduling

CEI-x30 User's Manual 97

The 20 msec offset was derived as the sum of the duration required to
transmit the groups that precede this group in the scheduling order.

Time Group
100 A
200 A
210 B
300 A
320 C
400 A
410 B
500 A
600 A
610 B
620 C
700 A
800 A
810 B
900 A
920 C
etc.

In this transmission example, any start offset from 20 msec to 80 msec
would suffice for the 300msec (block C) message group. A start offset
greater than 90 msec would cause this message group to overlap into the
next scheduled frame for the block A message group and would
subsequently induce skewing for those messages.

If the three message rate groups were all even multiples of each other (e.g.
100, 200, and 400 msec) then rate skew would never occur. The good
news is that, although the slowest rate messages are most susceptible to
rate skew, they are also typically the most tolerant to variation in
transmission time.

Since the message scheduler processes all messages in the order of their
location in the schedule table, rate skew may also appear on faster rate
messages defined further into the table following slower rate messages.
This skew can be easily eliminated by defining faster rate messages first
and slower rate messages last.

In conclusion, if the minimum rate skew is desired on all transmitted
messages, you must make an a priority determination of the message
loading on each channel and insure messages are scheduled not only with
the fastest rates first, but taking full advantage of the start offset feature.

Note:

CEI-x30 User's Manual 98

CHAPTER 15

BusTools/ARINC™ Data Bus Analyzer

General Information
BusTools/ARINC is an optional ARINC 429 analysis and simulation
utility which runs under Windows. It enhances the utility of an underlying
ARINC 429 interface board by expanding your scope of control and by
providing additional instrumentation and analytical tools. Additionally,
BusTools/ARINC™ provides support for devices configured with ARINC
561, 573/717, or Commercial Standard Digital Bus (CSDB) channels.

BusTools/ARINC™ supports usage of up to four boards at the same time
or independently and allows simultaneous control of all channels on each
board.

Its data logging function streams data to disk or memory and replays it in a
time-sequenced display. It provides multiple buffering mechanisms,
including real-time display of data in engineering units. Strings of
outgoing messages are generated, repeated, or automatically stepped
through a sequence. Strings of incoming messages are filtered and
captured for current or future analysis. A database of standard ARINC 429
translations is included. Translation among binary, hexadecimal, and
engineering units is provided, as is a powerful user-defined label facility.

BusTools/ARINC Demo Software
A free demo version of BusTools/ARINC™ is available on our web site at
‘http://www.ge-ip.com/products/1068’. The demo software operates over
a simulated ARINC 429 interface board, but is otherwise identical to the
full version.

CEI-x30 User's Manual 99

CHAPTER 16

Program Interface Library

Overview
GE Intelligent Platforms Embedded Systems supplies an extensive
software Application Programming Interface (API) for the CEI-x30
supported products. API routines are supplied to setup the interface,
configure channel attributes, and transmit and receive data for the most
common desktop and embedded programming environments (Windows,
Linux, Integrity, and VxWorks).

API Source Files
This library of utility routines provides the ability to write your own
programs to interface with a CEI-x30 product. They are written in C and
delivered in a generic ANSI C compiler-compatible format. They can be
called from other languages by adhering to the procedures defined in the
applicable documentation. The API consists of the following C source
files:

CDEV_API.C
This file contains the bulk of the API functionality. Most of the routines
that interact directly with the hardware device reside within this file.

CDEV_API.H
This header file contain the majority of the API constants, data types, and
function prototypes, and should be included in all C programs that
reference one or more CEI-x30 API utility routines.

API Source Files Program Interface Library

100 CEI-x30 User's Manual

CDEV_GLB.H
This header file contains the majority of the API global variables, internal
definitions, and data structures.

AR_ERROR.H
This header file contains the error string constant definitions utilized by the
API routine AR_Get_Error, describing each of the potential error codes
returned by the CEI-x30 API utility routines.

CDEV_HW.H
This header file contains all of the API constants that define the hardware
interface for the CEI-x30 architecture; included in CDEV_API.H.

CEI_TYPES.H
This header file contains all of the type defines for the various data types
used with the respective operating system and compiler; included in
CDEV_API.H.

CDEV_WIN.C
This file contains the C routines that interface directly with the ARINC
common low-level driver interface library, CEI_LL.LIB/DLL, supporting
all Windows operating systems.

CDEV_VXW.C
This file contains the C routines that interface directly with the VxWorks
kernel.

CDEV_LNX.C
This file contains the routines that interface directly with the Linux kernel
driver provided with the CEI-x30 Linux distribution archive.

Program Interface Library API Source Files

CEI-x30 User's Manual 101

CDEV_INT.C
This file contains the routines that interface directly with the Integrity
operating system.

CDEV_LRT.C
This file contains the routines that interface directly with the LabVIEW
Real-Time operating environment.

CDEV_FW.H - Firmware Load Files
The header file CDEV_FW.H is included in the source file CDEV_API.C,
containing the array declarations for all CEI-x30 board firmware. The
default compilation of CDEV_API.C includes the firmware load modules
for the entire CEI-x30 product line. When the compiler directive
LABVIEW_RT is defined, only the firmware for the CEI-830, R830RX,
RCEI-530, and RAR-CPCI boards are included in the build, as these are
the products currently supported with LabVIEW Real-Time. When the
compiler directive INTEGRITY_PCI_PPC is defined, only the CEI-830
firmware is included in the build. The RAR-PCIE firmware is loaded from
Flash Memory, and is not subject to a required firmware header file.

If for any reason you wish to reduce the API library or object module size
by omitting the firmware load modules for extraneous boards, you may
replace the header file reference in the respective include statement(s) with
the header file FPGAX30N.H. For example, to omit the RAR-CPCI
firmware load module you would modify line 86 of the file CDEV_FW.H
as follows:

 static CEI_UINT32 const fpga_630[]={
 #include "fpgax30n.h"
 };

The firmware header files are referenced as follows:

FPGA830.H CEI-830 Firmware
FPGA830RX.H R830RX Firmware
FPGA430.H CEI-430 Firmware
FPGA430A.H CEI-430A Firmware
FPGA530.H CEI-530 Firmware
FPGA630.H RAR-CPCI Firmware
FPGAA30.H AMC-A30 Firmware
FPGA_EC.H RAR-EC Firmware
FPGAX30N.H Two element array (empty f/w allocation)

Windows Libraries Program Interface Library

102 CEI-x30 User's Manual

Windows Libraries
For the CEI-x30-SW supported products, separate 32-bit and 64-bit
Windows API Libraries are provided. For Windows OS target
implementation, all API function prototypes are declared “_stdcall”. The
CEI-x30 API library included in the installation is referenced as:

 CDEV_API.LIB 32-bit Microsoft VS6.0 Library

 CDEV_API.DLL 32-bit Microsoft VS6.0 DLL

 CDEV_API64.LIB 64-bit Microsoft VS2008 Library

 CDEV_API64.DLL 64-bit Microsoft VS2008 DLL

Included with the installation are the GE Common Low-level driver
interface and installation verification libraries (not required for linking
application programs):

 CEI_Install.DLL 32-bit Microsoft VS6.0 DLL

 CEI_Install64.DLL 64-bit Microsoft VS2008 DLL

All DLLs are installed in the Windows “System” folder. The exact folder
name depends on the host version of Windows operating system. The 32-
bit versions of these DLLs are typically installed in either
‘c:\winnt\system32’ or ‘c:\windows\system32’ under 32-bit Windows or
‘c:\windows\syswow64’ under 64-bit Windows. The 64-bit versions of
these DLLs will be installed in the 64-bit Windows system folder (typically
‘c:\windows\system32’ under 64-bit Windows).

Time-tag Structure Definition
The following API routines use the AR_TIMETAG_TYPE data structure
definition in providing the timer/time-tag reference or as an initial value for
the reset of the internal timer:

 AR_GET_TIME
 AR_SET_TIME
 AR_GETNEXT_XT
 AR_GETWORD_XT
 AR_GET_DATA_XT
 AR_CONVERT_TIME_TO_STRING

Under the Windows and VxWorks operating systems, the
AR_TIMETAG_TYPE data structure and pAR_TIMETAG_TYPE pointer
types used by these routines are defined to use 64-bit integer values, as
follows:

Program Interface Library Time-tag Structure Definition

CEI-x30 User's Manual 103

timeTagFormat __int64 or long long

 The format of the corresponding timeTag
structure member. Valid values for this
element are:

AR_TIMETAG_EXT_IRIG_64BIT
AR_TIMETAG_INT_USEC_64BIT
AR_TIMETAG_HOST_USEC_64BIT1
AR_TIMETAG_INT_20USEC_32BIT
AR_TIMETAG_INT_MSEC_32BIT
AR_TIMER_X20_COMPAT_32BIT

timeTag __int64 or long long

 The timer-referenced time-tag, formatted as
specified in the timeTagFormat structure
member.

referenceTimeTag __int64 or long long

 The 64-bit, one microsecond timer value
corresponding to the time value supplied in
the timeTag member.

Setting the Device Time
When assigning an initial time reference, the host application may choose
to set either the device 1 microsecond timer or the IRIG generator timer via
invocation of AR_SET_TIME.

When AR_SET_TIME is invoked with an AR_TIMETAG_TYPE data
structure parameter timeTagFormat member defined to be
AR_TIMETAG_EXT_IRIG_64BIT, the format of the timeTag member is
defined as a 30-bit entity of BCD-like values using the following format:

29-28 27-24 23-20 19-18 17-14 13-11 10-7 6-4 3-0

hundreds
of days

tens of
days

days tens of
hours

hours tens of
minutes

minutes tens of
seconds

seconds

When AR_SET_TIME is invoked with a timeTagFormat member defined
to be AR_TIMETAG_INT_USEC_64BIT, the timeTag member is
referenced as a 64-bit 1 microsecond timer value.

1 This format returns the host OS system time value converted to have a 1
microsecond resolution, supported only by the API routine ar_get_time().

Return Status Values Program Interface Library

104 CEI-x30 User's Manual

Return Status Values
The following return status values are used by the CEI-x30 API routines.
They are defined in the C header file CDEV_API.H and are used in the
following context:

C Constant Value Constant Definition

ARS_FAILURE -1 Requested operation failed
ARS_NODATA 0 No data was detected or received
ARS_NORMAL 1 Normal successful completion
ARS_GOTDATA 4 Data was received
ARS_BAD_MESSAGE 5 Receipt of an invalid ARINC

429 message was detected
ARS_INVHARVAL 1003 Invalid configuration value
ARS_XMITOVRFLO 1004 Transmit buffer overflow
ARS_INVBOARD 1005 Invalid board argument
ARS_NOSYNC 1006 Transmit buffer flush failed
ARS_MEMWRERR 1013 SRAM memory test error
ARS_INVARG 1019 General invalid argument value
ARS_DRIVERFAIL 1021 Driver failed to install or

uninstall the ISR
ARS_WINRTFAIL 1022 Device driver open failure
ARS_CHAN_TIMEOUT 1023 Channel timeout in receive

function
ARS_NO_HW_SUPRT 1024 Function not supported by

specified hardware
ARS_HW_CONSISTENCY 1029 Device is not programmed for

Enhanced Firmware operations
ARS_WRAP_DATA_FAIL 1031 BIT wrap test data read-back fail
ARS_WRAP_FLUSH_FAIL 1035 BIT cannot execute external

wrap test due to unknown
external data reception

ARS_WRAP_DROP_FAIL 1036 BIT wrap test data not received
ARS_INT_ISR 1037 Driver failed to install or

uninstall API interrupt support
ARS_BOARD_MUTEX 1038 API routine failed to acquire or

release a board lock mechanism
ARS_NO_OS_SUPPORT 1041 There is no operating system

support for the requested feature
ARS_ERR_SH_MEM_OBJ 1050 API failed to allocate a shared

object (semaphore or mutex)

Program Interface Library Programming with the CEI-x30 API Interface

CEI-x30 User's Manual 105

C Constant Value Constant Definition

ARS_ERR_SH_MEM_MAP 1051 API failed to allocate a shared
memory region (multi-process)

Programming with the CEI-x30 API Interface
Following the outline below, you can easily incorporate the CEI-x30 API
into your application.

1. For your application to interface to any CEI-x30-SW supported
products the device must first be initialized. Invoke the
AR_LOADSLV routine with parameters as described in the API
Routines section.

2. Assign the characteristics of the transmit and receive channels if the
default configuration is not appropriate. This is performed with
multiple invocations of either AR_SET_DEVICE_CONFIG or
AR_SET_CONFIG.

3. Perform receiver buffer mode selection based on individual
channel/protocol usage via the routine AR_SET_DEVICE_CONFIG.
Using buffered mode for multiple channels of the same protocol
provides channel-specific access to received data, where merged mode
provides for single receive channel access to selected channel data.

4. Once channel configuration is complete, invoke AR_GO to initiate
data processing.

5. Then invoke AR_PUT_429_MESSAGE and
AR_GET_429_MESSAGE to send and receive single ARINC 429
messages, respectively.

6. When communication is complete, invoke AR_STOP to suspend
active data processing.

Subsequently, you could invoke AR_GO again to restart the interface.

7. On termination of the application, invoke AR_CLOSE to release all
resources acquired during initialization. It is very important that all
applications invoke AR_CLOSE upon termination; otherwise, the
operating system does not release the memory acquired when the API
was initialized.

The example wrap program source code, contained in TST_CNFG.C, is
supplied with your installation. This program demonstrates the use of the
API for the ARINC 429 and equivalent protocols.

When calling the utility routines that return a status value, it is important to
verify the returned status indicates success; otherwise, the application may
not be aware that an important function may have failed to fulfill a
requested operation.

Example Routines – Summary Program Interface Library

106 CEI-x30 User's Manual

Example Routines – Summary
Example applications demonstrating various CEI-x30 API features are
provided in C source format, as described in the following paragraphs.

Tst_cnfg.c
The example source file TST_CNFG.C is included with your installation.
To access this example executable under the Windows operating system:

1. Click Start, and then Programs.

2. Select GE CEI-x30-SW and then Test Configuration.

Within TST_CNFG.C are application-style routines demonstrating use of
the API routines for the ARINC 429 protocol:

test_basic_arinc_429 an internal wrap test designed to demonstrate
ARINC 429 API usage. This routine
enables internal wrap on all 429 receive
channels. It also assigns a bus speed of
12.5kbps and ODD parity to both transmit
and receive channels. Ten ARINC 429
messages are sent on each transmit channel
and proper reception verified on the
respective receive channel.

demo_advanced_arinc_429 a demonstration of the following advanced
features available with CEI-x30 products:

Transmit Message Scheduling
Enhanced Label/SDI/ESSM Data Filtering
Snapshot Message Data Acquisition
Enhanced Time-tag Reset and Conversion
IRIG Time-tag Selection (if installed on hardware)

demo_discrete_io_features a demonstration on the use of the Discrete
I/O Channels and the respective API routines

demo_irig_features a demonstration of IRIG features requiring
an external IRIG connection:

IRIG DAC Threshold Adjustment
IRIG Bias (Offset) Time Assignment
IRIG Validity Determination
IRIG Time Conversion and Display

test_arinc_717 an internal wrap test designed to demonstrate
ARINC 573/717 API usage. This routine
enables internal wrap on the ARINC
573/717 receive channel. It also assigns a

Program Interface Library Example Routines – Summary

CEI-x30 User's Manual 107

bus speed 768bps, a sub-frame size of 64
words, and a BPRZ selection to the ARINC
573/717 transmit and receive channels. A
frame consisting of a data pattern
incrementing from $01 to $FF and sync
words of $123, $224, $325, and $426 is
transmitted and proper reception verified.

demo_pci_interrupts This routine demonstrates how to setup a
custom interrupt service routine, setup Label
Filter Table triggers generating interrupt
events, enabling interrupts, and retrieving
interrupt event data from the queue.

custom_interrupt_handler This routine is the custom interrupt service
routine assigned within the example routine
demo_pci_interrupts.

Multiprocess_test.c
Provisions for simultaneous multiple process access to a CEI-x30 board are
supported under the Windows and Linux operating systems. This feature
is implemented in the standard API with minimal requirements on the
application developer. The example program contained in the source file
multiprocess_test.c describes how one method of multi-process application
may be implemented.

This example application is based on separate processes, one for ARINC
429 scheduled message transmission on multiple transmit channels, and
others for ARINC 429 message reception on individual receive channels.
Regardless of the process invocation type, setup for the multiple process
application is performed via invocation of the API routine
AR_SET_PRELOAD_CONFIG, prior to invocation of AR_LOADSLV.

A single "transmit" process should be launched first, with subsequent
invocation of one or more "receive" processes. The "transmit" process
loads the board using AR_LOADSLV, configure board and transmit
channel specific parameters using AR_SET_DEVICE_CONFIG, and
activate data processing using AR_GO. After the "transmit" process
invokes AR_GO, it is permissible to launch one or more "receive"
processes. A "receive" process first attaches to the board using
AR_LOADSLV, then execute operations strictly confined to the particular
channel to which that process is associated (in this case
AR_SET_DEVICE_CONFIG and AR_GETWORDT). When finished,
each "receive" process invokes AR_CLOSE and terminates. The
"transmit" process should remain running until all "receive" processes have
terminated; upon termination the "transmit" process invokes AR_STOP
and AR_CLOSE.

Visual Basic Program Interface Library

108 CEI-x30 User's Manual

While the previously discussed application API invocation order is
recommended, it is not strictly required. You may actually invoke a
"receive" process first and terminate it last; however, multi-process
applications should rely on a primary board-control process as the focus for
board initialization, BIT functionality, and control of h/w message
processing.

Visual Basic
A text file, CDEV_API_VB.TXT, is provided to aid the Visual Basic
programmer in using the CDEV_API DLL in the Examples\VB folder of
the software distribution. This text file contains the Function Declaration
and Global Constant statements required to interface to CDEV_API.DLL.
You can manually copy and paste text from this file to your project, or you
can use the Microsoft API Text Viewer utility included with Visual Basic.
For more information on the API Text Viewer, consult Microsoft Visual
Basic documentation.

The CDEV_API_VB.TXT is designed for use with any 32-bit version of
Visual Basic; however, the VB example and API interface are
recommended for use with Visual Basic version 6.0 or later.

Working with Unsigned Integers in Visual Basic
Visual Basic doesn’t support unsigned integers. Since the CEI-x30 API
library uses unsigned integers for some function parameters, problems can
arise when attempting to set values in the upper half of the range.

Example

When a CEI-x30 API function uses an argument of C type unsigned short
the equivalent type is integer in Visual Basic. Both are 16-bit values but
the Visual Basic variable has a range of -32768 to 32767. The C argument
has a range of 0 to 65535. A Visual Basic error is generated if an integer
type is set to value greater than 32767.

Solutions

There are two solutions to this problem. The easiest is to set the value of
variables directly in Hex. To set an integer variable to 65535 use:
myVariable = &HFFFF. (note the &H syntax) . For setting long variables
use the ending “&” as in myvar = &H12&.

The second solution is to convert the desired unsigned value to the signed
equivalent. This can be accomplished in a small utility function:

Program Interface Library API Routines - Summary

CEI-x30 User's Manual 109

Function u_conv (unsigned as Long) as Integer
 Dim signed as Integer
 If unsigned > 32767 then
 signed = unsigned - 65536
 Else
 signed = unsigned
 End If
 u_conv = signed
End Function

When using returned values from CEI-x30 API functions the opposite
conversion can be made. Often, the returned values from CEI-x30 API
functions simply need to be compared to the predefined values.

For more information on using Visual Basic with unsigned integers,
consult the Microsoft Support Knowledgebase Article ID: “112673 How to
Pass & Return Unsigned Integers to DLLs from VB”.

API Routines - Summary
The routines provided in the API supporting the CEI-x30 device features
are defined in the following pages, categorized and summarized:

Initialization and Control Routines
ar_loadslv The main initialization routine, ar_loadslv()

acquires the resources for the PCI memory
regions and initializes the CEI-x30 device.

ar_board_test Verifies the CEI-x30 data processing
capabilities via internal/external data wrap.

ar_bypass_wrap_test Controls conditional execution of the
ARINC 429 internal wrap test within
ar_initialize_device.

ar_initialize_api Initializes the CEI-x30 device API.

ar_initialize_device Initializes the CEI-x30 device to the default
state.

Device Control Routines
ar_go Enables CEI-x30 ARINC data processing.

ar_reset Disables CEI-x30 ARINC data processing
and initializes the device to the default state.

ar_stop Disables CEI-x30 ARINC data processing.

API Routines - Summary Program Interface Library

110 CEI-x30 User's Manual

Termination Routines
ar_close Releases all resources for the specified

device.

Receive/Transmit Channel-level Configuration Routines
ar_set_device_config As the main channel configuration routine, it

assigns ARINC 429-specific transmitter and
receiver channel configuration information.

ar_get_device_config Retrieves the value of a bit field for I/O and
ARINC 429 transmitter or receiver channel
configuration registers.

ar_enh_label_filter Assigns the enhanced label filter table
definition for each CEI-x30 device receiver.

ar_get_config Retrieves board-level configuration and API
local attribute values.

ar_get_573_config Retrieves the value of a bit field for an
ARINC 573/717 transmitter or receiver
channel configuration register.

ar_get_filter Retrieves the specified label filter buffer
entry from the enhanced label filter table.

ar_get_label_filter Retrieves the active state of label filtering for
a single label on all receivers.

ar_label_filter Assigns ARINC 429 label values to be
filtered by the specified receive channel.

ar_putfilter Places the specified label filter buffer entry
in the enhanced label filter table.

ar_set_config Assigns board-level configuration and API
local attribute values.

ar_set_573_config Assigns ARINC 573/717 transmitter and
receiver channel configuration information.

Program Interface Library API Routines - Summary

CEI-x30 User's Manual 111

Device-level Configuration Routines
ar_get_storage_mode Retrieves the API state of a device-generic

receive data storage mode.

ar_set_raw_mode Assigns both transmitter and receiver parity
state on the specified ARINC 429 channel.

ar_set_storage_mode Assigns the device-level receive data storage
mode.

Receive Data Processing Routines
ar_get_429_message Retrieves the next ARINC 429 message

from a receive buffer. Optionally, it waits
up to ½ second for data to become available.

ar_get_573_frame Retrieves a specified number of ARINC 573
data words from the receive buffer.

ar_getnext Retrieves the next message from the
specified receive buffer. It waits up to ½
second for data to become available.

ar_getnextt Retrieves the next message and a 32-bit, 20
µsec time-tag from the specified receive
buffer. It waits up to ½ second for data to
become available.

ar_getnext_xt Retrieves the next message with a 64-bit,
user-programmable time-tag from the
specified receive buffer. It waits up to ½
second for data to become available.

ar_getword Retrieves the next message from the
specified receive buffer.

ar_getwordt Retrieves the next message and a 32-bit, 20
µsec time-tag from the specified receive
buffer.

ar_getwordt_xt Retrieves the next message from the
specified receive buffer with a 64-bit, user-
programmable time-tag.

ar_get_data Retrieves the next available data and the 64-
bit, 1 µsec time-tag from a receive buffer.

API Routines - Summary Program Interface Library

112 CEI-x30 User's Manual

ar_get_data_xt Retrieves the next available data from a
receive buffer with a 64-bit, user-
programmable time-tag.

ar_getblock Retrieves all of the available ARINC 429
messages from the requested receive buffer
with 32-bit time-tags.

ar_getblock_t Retrieves all of the available ARINC 429
messages from the requested receive buffer,
with 64-bit time-tags.

ar_get_latest Retrieves the latest message from the
snapshot buffer for the specified
channel/label combination.

ar_get_latest_t Retrieves the latest message and time-tag
from the snapshot buffer for the specified
channel/label combination.

ar_get_snap_data Retrieves the latest message from the
snapshot buffer for the specified
channel/label/sdi combination.

Transmit Data Processing Routines
ar_define_msg Defines a scheduled ARINC 429 messages.

ar_define_msg_block Defines a block of scheduled ARINC 429
messages.

ar_modify_msg Modifies an existing ARINC 429 message
already defined for periodic transmission.

ar_modify_msg_block Modifies a block of ARINC 429 messages
already defined for periodic transmission.

ar_put_429_message Places a single message in the specified
ARINC 429 transmit buffer.

ar_put_573_frame Places a specified number of ARINC 573
data words in the transmit buffer.

ar_putword Places a single message in the specified
ARINC 429 transmit buffer.

ar_putblock Places multiple messages in a single ARINC
429 transmit buffer.

ar_putblock_multi_chan Places multiple messages in multiple
ARINC 429 transmit buffers.

Program Interface Library API Routines - Summary

CEI-x30 User's Manual 113

Timer-related Routines
ar_get_time Retrieves the current hardware reference

time based on the selected timer mode.

ar_get_timercntl Retrieves the current value of the OS timer.

ar_reset_timercnt Resets the internal timer/time-tag reference
to zero.

ar_set_timerrate Assigns the CEI-x30 compatible timer
resolution for use with ar_get_time() and any
ARINC 429 receive data routines returning
32-bit time-tag values.

ar_set_time Sets the internal clock/timer or IRIG time
generator to an application supplied value.

Information and Status Routines

ar_get_base_addr Retrieves a pointer to the base address of the
address space allocated to the specified
device.

ar_get_boardname Returns a string description of the specified
device.

ar_get_boardtype Retrieves the target device configuration.

ar_get_error Retrieves a message string associated with a
given error status code.

ar_get_status Retrieves the combined state of each receive
FIFO status register Data Available bit.

ar_num_rchans Retrieves the number of receive channels
supplied by the CEI-x30 device.

ar_num_xchans Retrieves the number of transmit channels
supplied by the CEI-x30 device.

Utility Routines
ar_execute_bit Verifies the CEI-x30 operational state

through various data wrap and timer tests.

ar_hw_interrupt_buffer_read Returns the contents of the API maintained
interrupt buffer entries.

ar_interrupt_queue_read Provides host access to read the device
interrupt queue.

API Routines - Summary Program Interface Library

114 CEI-x30 User's Manual

ar_set_isr_function Provides the method for the host application
to define a custom interrupt service routine.

ar_set_multithread_protect Enable/disable multithread access protection
to all API routines accessing the hardware
interface of the device.

ar_set_preload_config Defines the process and thread setup for the
calling application.

ar_sleep Suspends the calling thread for a specified
number of milliseconds.

ar_wait Delays the calling application for the
specified number of seconds.

ar_version Retrieves the current software version
number of the CEI-x30 API.

Program Interface Library AR_BOARD_TEST

CEI-x30 User's Manual 115

AR_BOARD_TEST
CEI_INT16 ar_board_test (CEI_INT16 board, CEI_INT16 testType)

This routine performs a single message internal or external wrap test on
each matched ARINC 429 transmit/receive channel pair. On successful
completion of the wrap test, the board is initialized to the default state via
invocation of AR_INITIALIZE_DEVICE.

ARS_NORMAL Routine execution was successful.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized or invalid board value was
provided.

ARS_MEMWRERR The SRAM test write/read/verify failed.

ARS_WRAP_DROP_FAIL ARINC 429 wrap test data missing.

ARS_WRAP_DATA_FAIL ARINC 429 wrap test data pattern mismatch.

ARS_WRAP_FLUSH_FAIL Unexpected data from an external source
was received during wrap test execution.

ARS_XMITOVRFLO A transmit buffer overrun occurred.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

CEI_INT16 testType (input) Type of test to execute. Valid values
for this parameter are:

 INTERNAL_WRAP (4)

 EXTERNAL_WRAP (5)

Syntax

Description

Return Value

Arguments

AR_BYPASS_WRAP_TEST Program Interface Library

116 CEI-x30 User's Manual

AR_BYPASS_WRAP_TEST
CEI_INT16 ar_bypass_wrap_test (CEI_INT16 board, CEI_INT16 bypass)

This routine defines an internal flag used to control the invocation of the
AR_BOARD_TEST routine during execution of AR_LOADSLV. The
routine AR_BOARD_TEST will perform a single-message internal wrap
test for each matching ARINC 429 transmit/receive channel pair. The
default state of this internal flag is ON, indicating no internal wrap test is
executed during the board/API initialization process.

This routine should be invoked with the bypass parameter set to AR_OFF
if you wish the API to perform an internal wrap test as part of the
board/API initialization process. Note that if AR_LOADSLV is invoked
with any ARINC 429 receive channel connected to an actively transmitting
LRU, execution of AR_BOARD_TEST may return a false failure status
indication.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An invalid board value was supplied.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

CEI_INT16 bypass (input) Bypass flag indicating whether or not
to bypass the internal wrap test when the
routine AR_LOADSLV is invoked. Valid
values for this parameter are:

 AR_ON (7) bypass internal test

 AR_OFF (8) execute internal test

Syntax

Description

Return Value

Arguments

Program Interface Library AR_CLR_RX_COUNT

CEI-x30 User's Manual 117

AR_CLR_RX_COUNT
CEI_VOID ar_clr_rx_count (CEI_INT16 board, CEI_INT16 channel)

This routine resets the API-tracked count of ARINC data words receive by
a particular channel to zero. The CEI-x30 device maintains a count of
ARINC data words received over the interface for each channel since the
device was initialized. When this routine is invoked, the API saves the
current count, to be used as the most recent reset reference and subtracted
from the device count when the count value is requested by
AR_GET_RX_COUNT.

None

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

CEI_UINT32 channel (input) Specifies which channel this routine
is to access. Valid range is 0 to one less than
the installed receive channel count.

Syntax

Description

Return Value
Arguments

AR_CLOSE Program Interface Library

118 CEI-x30 User's Manual

AR_CLOSE
CEI_INT16 ar_close (CEI_INT16 board)

This routine releases all resources acquired during the initialization of the
specified device. Once this routine has been executed, invocation of other
API routines results in the return of an invalid status.

ARS_NORMAL Routine execution was successful.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_WINRTFAIL Windows device driver failed to close the
session with the device.

ARS_FAILURE Generic failure to close the driver session or
terminate an active ISR.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_CONVERT_TIME_TO_STRING

CEI-x30 User's Manual 119

AR_CONVERT_TIME_TO_STRING
void ar_convert_time_to_string (CEI_INT16 board, CEI_INT16
displayFormat, pAR_TIMETAG_TYPE timeIn, pCEI_CHAR timeString)

This routine converts the time value provided in the timeIn structure to a
character string representation of date/time, format based on what is
specified via the displayFormat parm. The supplied time format (LSB
resolution) must be specified in the timeIn structure member
timeTagFormat, representing the resolution of the respective timeTag
member data.

none.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

CEI_INT16 displayFormat (input) Format for returned string:

AR_TD_REL_MIDNIGHT Relative to Midnight Format and
AR_TD_IRIG Full IRIG Format, defined as
 "(DDD)hh:mm:ss.uuuuuu"

AR_TD_DATE Date Format defined as
"(MM/DD)hh:mm:ss.uuuuuu"

pAR_TIMETAG_TYPE timeIn (input) Source 64-bit time structure

pCEI_CHAR timeString (output) Pointer to destination
text string

Syntax

Description

Return Value

Arguments

AR_DEFINE_MSG Program Interface Library

120 CEI-x30 User's Manual

AR_DEFINE_MSG
CEI_INT16 ar_define_msg (CEI_INT16 board, CEI_INT16 channel,
CEI_INT16 rate, CEI_UINT16 start, CEI_INT32 data)

This routine defines a 32-bit ARINC 429 message for periodic
retransmission at the specified rate. Once defined, the message rate,
content, or assigned channel may be altered through AR_MODIFY_MSG.

Any positive value between 0 and 1023 is the unique message scheduler
table entry index assigned to this message.

ARS_FAILURE Indicates the routine encountered an
uninitialized board, an invalid board/channel
parameter value, or a full message scheduler
table.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

CEI_INT16 channel (input) Channel message scheduler table this
routine is to access. The valid range is 0 to
one less than the number of installed
transmit channels.

CEI_INT16 rate (input) Periodic transmission rate, defined in
milliseconds by default. For backward
compatibility to the CEI-x20 tick-timer
message rate method, when
AR_SET_TIMERRATE has been executed
to simulate the CEI-x20 tick-timer resolution
assignment within the CEI-x30 API, the rate
and start parameters is scaled to the specified
tick-timer resolution.

CEI_UINT16 start (input) Offset, (in milliseconds), from the
start of CEI-x30 device message processing
at which this message will begin its initial
periodic transmission.

CEI_INT32 data (input) The 32-bit ARINC 429 message to
transmit.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_DEFINE_MSG_BLOCK

CEI-x30 User's Manual 121

AR_DEFINE_MSG_BLOCK
CEI_INT16 ar_define_msg_block (CEI_INT32 numberOfEntries,
pAR_SCHEDULED_MSG_ENTRY_TYPE messageEntry)

This routine defines a series of 32-bit ARINC 429 messages for periodic
retransmission at the specified rate. Once defined, the message rate,
content, or assigned channel for any individual message scheduler table
entry within this same structure may be altered via invocation of
AR_MODIFY_MSG_BLOCK.

ARS_NORMAL Routine execution was successful.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_INVARG Invalid channel parameter value.

ARS_INVHARVAL Message scheduling is not supported on the
specified channel.

ARS_FAILURE Message scheduler table full indication.

CEI_INT32 numberOfEntries (input) The number of entries to define from
the subsequent structure pointer parameter,
messageEntry.

pAR_SCHEDULED_MSG_ENTRY_TYPE messageEntry (input)

 Array of structures of message definition content, defined as follows:

unsigned long messageIndex The unique message scheduler table entry
index assigned to this message. Upon
completion of this routine, the messageIndex
structure member will have been updated to
reflect the message scheduler table index
assigned to the respective message.

unsigned long board Device to access. Valid range is 0-15.

unsigned long channel Which channel portion of the message
scheduler table this routine is to access. The
valid range is 0 to one less than the number
of installed transmit channels.

Syntax

Description

Return Value

Arguments

AR_DEFINE_MSG_BLOCK Program Interface Library

122 CEI-x30 User's Manual

unsigned long rate Periodic transmission rate, defined in
milliseconds by default. For backward
compatibility to the CEI-x20 tick-timer
message rate method, when
AR_SET_TIMERRATE has been executed
to simulate the CEI-x20 tick-timer resolution
assignment within the CEI-x30 API, the rate
and start parameters will be scaled to the
specified tick-timer resolution.

unsigned long start Offset, (in milliseconds), from the start of
CEI-x30 device message processing at
which this message will begin its initial
periodic transmission.

unsigned long txCount The total number of times this message will
be transmitted. The constant value
ARU_SCHED_MSG_INFINITE
(0xFFFFFFFF) indicates infinite
transmission of this message is requested.

unsigned long data The 32-bit ARINC 429 message to transmit.

Program Interface Library AR_ENH_LABEL_FILTER

CEI-x30 User's Manual 123

AR_ENH_LABEL_FILTER
CEI_INT32 ar_enh_label_filter (CEI_INT16 board, CEI_INT16 channel,
CEI_UINT16 label, CEI_UINT16 sdi, CEI_UINT16 essm, CEI_INT16
action)

This routine supports the assignment of both a single entry in the enhanced
label filter table for the specified receive channel and channel-wide field
definitions for the entire channel filter table. The CEI-x30 device
enhanced label filtering feature supports the ability to both filter ARINC
429 messages and generate a hardware interrupt based on reception of a
message matching the combined 8-bit label value, 2-bit SDI value, and 3-
bit ESSM value.

This routine should be used exclusive of the use of the legacy API
routine AR_LABEL_FILTER, as any filter table value assigned with one
routine supersedes a previous assignment with another.

Label Filtering
Once message reception filtering has been enabled for a specified
channel/label/sdi/essm combination, data received with matching bit field
values will be discarded until label filtering for that specified message has
been disabled.

Interrupt Generation
Once interrupt generation filtering has been enabled for a specified
channel/label/sdi/essm combination, data received with matching bit field
values induce an entry in the CEI-x30 device interrupt queue. If the device
hardware interrupt has been enabled by invoking
AR_SET_DEVICE_CONFIG with the option
ARU_HW_INTERRUPT_ENABLE set to AR_ON, the device generates a
PCI Interrupt to be serviced by the default interrupt service routine
provided with the API or a custom ISR assigned by the host application.

The label filtering feature is disabled for all labels/sdi/essm combinations
by default. Label filtering changes are effective immediately on
completion of this routine.

ARS_NORMAL Routine execution was successful.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

Syntax

Description

Note:

Return Value

AR_ENH_LABEL_FILTER Program Interface Library

124 CEI-x30 User's Manual

ARS_INVBOARD An uninitialized board or invalid board
value was provided .

ARS_INVHARVAL Invalid channel parameter value.

ARS_INVARG Invalid label, sdi, essm, or action parameter
value.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

CEI_INT16 channel (input) Channel label filter table this routine
is to access. The valid range is 0 to one less
than the installed receive channel count.

CEI_UINT16 label (input) The label of interest. Valid range is
0-255. Also valid is ARU_ALL_LABELS
(511), which invokes the action for all labels.

CEI_UINT16 sdi (input) The SDI field value of interest. Valid
range is 0-3. Also valid is ARU_ALL_SDI
(4), which invokes the action for all SDI
entries for the specified label.

CEI_UINT16 essm (input) The ESSM field value of interest.
Valid range is 0-7. Also valid is
ARU_ALL_ESSM (8), which invokes the
action for all ESSM entries for the specified
label.

CEI_INT16 action (input) Enable or disable filtering action for
this table entry. Valid values are:

FILTER_SEQUENTIAL 0x10 If CLEAR add the respective
message to the sequential receive buffer; if SET
filter the respective message from the sequential
receive buffer.

FILTER_SNAPSHOT 0x20 If CLEAR add the respective
message to the snapshot buffer; if SET filter the
respective message from the snapshot buffer.

FILTER_INTERRUPT 0x40 If CLEAR does nothing; if SET,
receipt of the respective message creates a receive
channel index entry in the device’s interrupt queue
and if enabled, generates a PCI interrupt.

Arguments

Program Interface Library AR_EXECUTE_BIT

CEI-x30 User's Manual 125

AR_EXECUTE_BIT
CEI_INT16 ar_execute_bit (CEI_INT16 board, CEI_INT16 testType)

This routine performs hardware test functionality normally associated with
board-level Built-In-Test (BIT). Testing ranges from a full SRAM
memory test to verification of ARINC 429 message wrap on
transmit/receive channel pair on the specified device.

This routine bypasses execution and returns a failure status if you invoke
it when multi-process execution is enabled by
AR_SET_PRELOAD_CONFIG and multiple processes are attached to a
single board.

ARS_NORMAL Routine execution was successful.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_MEMWRERR Device SRAM test write/read/verify failure.

ARS_WRAP_DROP_FAIL ARINC 429 wrap test data missing.

ARS_WRAP_DATA_FAIL ARINC 429 wrap test data pattern mismatch.

ARS_WRAP_FLUSH_FAIL Unknown external data received during wrap
test execution.

ARS_INVBOARD An uninitialized board or invalid board
value was provided .

ARS_INVARG Invalid testType parameter value.

ARS_FAILURE Timer-deviation test failed or multi-process
execution is enabled.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

CEI_INT16 testType (input) Type of test to execute, defined as
follows:

AR_BIT_BASIC_STARTUP (0) invokes a basic device
initialization to a reset state (all buffers flushed and channel
configurations reset); however, the device firmware is not
reloaded or restarted.

Syntax

Description

Note:

Return Value

Arguments

AR_EXECUTE_BIT Program Interface Library

126 CEI-x30 User's Manual

AR_BIT_FULL_STARTUP (1) invokes device
initialization, a full, destructive SRAM memory test, and an
internal wrap test of all matched transmit/ receive channels,
(regardless of prior invocation of the API routine
AR_BYPASS_WRAP_TEST). The duration of this test is
approximately 17 seconds.

AR_BIT_PERIODIC (2) invokes a short, non-
destructive SRAM memory test and a timer-deviation test,
providing verification of the basic health status of the device.

AR_BIT_INT_LOOPBACK (3) invokes an internal wrap
test of all matched transmit/receive channels.

AR_BIT_EXT_LOOPBACK (4) invokes an external wrap
test of all matched transmit/receive channels.

AR_BIT_PARTIAL_SRAM (8) invokes a short
destructive test of select, unused SRAM locations

AR_BIT_FULL_SRAM (9) invokes a destructive test
of all SRAM locations

AR_BIT_SELECT_SRAM_MIN to
 AR_BIT_SELECT_SRAM_MAX (100 to 1123)
invokes a destructive test of a select block of SRAM, parsed
into 1024 blocks of 512 locations each.

Program Interface Library AR_GET_573_FRAME

CEI-x30 User's Manual 127

AR_GET_573_FRAME
CEI_INT16 ar_get_573_frame (CEI_INT16 board, pCEI_INT32
numberWords, pCEI_UINT16 arincData)

This function retrieves numberWords of ARINC 573/717 data from the
ARINC 573/717 receive channel. If any data is available, the actual
number of words received is indicated in the return value of numberWords.
If auto-synchronization is configured for the ARINC 573/717 channel, this
function will search the receive buffer for any occurrence of the first sub-
frame sync word (defined via invocation of AR_SET_573_CONFIG with
the item set to ARU_573_SYNC_WORD1) and return the specified
number of words of frame data following the instance of that sync word.
With automatic synchronization selected and the full frame size specified
in numberWords, this function will wait until the full frame is received and
copied to the destination array. The acquisition of an entire ARINC
573/717 frame may require up to four seconds to complete.

ARS_NODATA No frame data was available.

ARS_GOTDATA At least one ARINC 573/717 data word has
been retrieved.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_INVHARVAL ARINC 573 support is not available on
device.

ARS_INVARG Invalid numberWords or arincData
parameter.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

pCEI_UINT32 numberWords (input/output) As an input this specifies
the number of words to retrieve from the
receive buffer. As an output this indicates
how many words were retrieved from the
receive buffer, less than or equal to the input
value of numberWords.

pCEI_UINT16 arincData (output) The address that is to receive the
frame data. The format of each data word in
the ARINC 573/717 frame is defined as
follows:

Syntax

Description

Return Value

Arguments

AR_GET_573_FRAME Program Interface Library

128 CEI-x30 User's Manual

15 14 13 – 12 11 - 0
sync word RESERVED subframe data

sync word: indicates this word was
detected as a sync word, where a value of
1 indicates sync word and 0 indicates
data word.
subframe: identifies the sub-frame
assignment for this word, where 1
indicates sub-frame 1, 2 indicates sub-
frame 2, 3 indicates sub-frame 3, and 0
indicates sub-frame 4.
data: the 12-bit ARINC 573/717 data.

Program Interface Library AR_GET_429_MESSAGE

CEI-x30 User's Manual 129

AR_GET_429_MESSAGE
CEI_INT16 ar_get_429_message (CEI_INT16 board, CEI_INT16
channel, CEI_INT16 waitState, pCEI_VOID data, pCEI_VOID timetag)

This routine retrieves the most recent ARINC 429 data and 32-bit time-tag
from the specified channel. If no data is present in the receiver buffer, this
routine attempts to retrieve data for up to one-half second. If no data is
present after one-half second, a time-out status is returned. If no wait is
specified and no data is available, the return status is so indicated.

ARS_GOTDATA An ARINC 429 message and its time-tag
have been retrieved.

ARS_CHAN_TIMEOUT No data available (if waitState is AR_ON).

ARS_NODATA No data available (if waitState is AR_OFF).

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board
value was provided .

ARS_INVHARVAL Channel is not available on the device.

ARS_INVARG A NULL data parameter value was
provided.

CEI_INT16 board (input) Device this routine is to access.
Valid range is 0-15.

CEI_INT16 channel (input) Specifies which channel this routine
is to access. Valid range is 0 to one less than
the installed receive channel count.

CEI_INT16 waitState (input) Whether or not to wait for data. A
value of AR_ON specifies to wait ½ second
for data; a value of AR_OFF specifies to
return if no data is immediately available.

Syntax

Description

Return Value

Arguments

AR_GET_429_MESSAGE Program Interface Library

130 CEI-x30 User's Manual

pCEI_VOID data (output) The address that is to receive the
data. The returned ARINC 429 data is
always in normal ARINC format.

pCEI_VOID timetag (output) The address that is to receive the
32-bit time-tag associated with the data,
(resolution is programmable). If the merged
receive mode is active for the specified
channel, the upper five bits of the 32-bit
time-tag word will contain the receive
channel number on which the data was
received. If the timetag parameter is NULL,
time-tag information will not be provided.

Program Interface Library AR_GET_BASE_ADDR

CEI-x30 User's Manual 131

AR_GET_BASE_ADDR
pCEI_UINT32 ar_get_base_addr (CEI_INT16 board)

This routine returns the driver-acquired virtual base address for the PCI
memory region for the host interface of the specified device. This routine
should be invoked only after successfully invoking AR_LOADLSV.

Any positive value exceeding $2000 is the driver-acquired virtual base
address for the host interface PCI memory region of the specified device.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

Syntax

Description

Return Value

Arguments

AR_GETBLOCK Program Interface Library

132 CEI-x30 User's Manual

AR_GETBLOCK
CEI_INT16 ar_getblock (CEI_UINT32 board, CEI_UINT32 channel,
CEI_INT32 maxMessages, CEI_INT32 offset, pCEI_INT32 actualCount,
pCEI_INT32 data, pCEI_INT32 timeTags);

This routine retrieves all of the available ARINC messages from the
requested receive channel buffer and copies them to the desired
destination. If the timeTags parameter is not NULL, the 32-bit time-tag
data associated with each retrieved message is also copied.

ARS_GOTDATA Message(s) and time-tag(s) were retrieved.

ARS_NODATA No data was available.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board
value was provided .

ARS_INVHARVAL Channel is not available on device.

ARS_INVARG Invalid maxMessages, actualCount, or data
parameter was encountered.

CEI_UINT32 board (input) Device to access. Valid range is 0-
15.

CEI_UINT32 channel (input) Specifies which channel this routine
is to access. Valid range is 0 to one less than
the installed receive channel count.

CEI_INT32 maxMessages (input) The number of messages to retrieve.

CEI_INT32 offset unused parameter, retained for legacy API
support

pCEI_INT32 actualCount (output) The number of messages retrieved.

pCEI_INT32 data (output) Array to store 32-bit ARINC data.

pCEI_INT32 timeTags (output) Array to store 32-bit time-tag data.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GETBLOCK_T

CEI-x30 User's Manual 133

AR_GETBLOCK_T
CEI_INT16 ar_getblock_t (CEI_UINT32 board, CEI_UINT32 channel,
CEI_INT32 maxMessages, pCEI_INT32 actualCount, pCEI_UINT32
msgChan, pCEI_INT32 data, pCEI_INT32 timeTagMsw, pCEI_INT32
timeTagLsw)

This routine retrieves the available ARINC 429 messages from the
requested receive channel buffer and copies them to the desired
destination. If the msgChan, timeTagMsw, and timeTagLsw parameteis are
not NULL, the receiver channel and 64-bit time-tag data associated with
each retrieved message are also copied.

ARS_GOTDATA Message(s) and time-tag(s) were retrieved.

ARS_NODATA No data was available.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_INVHARVAL Channel is not available on device.

ARS_INVARG Invalid maxMessages, actualCount, or data
parameter was encountered.

CEI_UINT32 board (input) Device this routine is to access.
Valid range is 0-15.

CEI_UINT32 channel (input) Specifies which channel this routine
is to access. Valid range is 0 to one less than
the installed receive channel count.

CEI_INT32 maxMessages (input) The number of messages to retrieve.

pCEI_INT32 actualCount (output) The number of messages retrieved.

pCEI_UINT32 msgChan (output) Array to store the receiver channel
indication, necessary for actual receive
channel determination when using the
Merged Receive Mode

Syntax

Description

Return Value

Arguments

AR_GETBLOCK_T Program Interface Library

134 CEI-x30 User's Manual

pCEI_INT32 data (output) Array to store 32-bit ARINC 429
data.

pCEI_INT32 timeTagMsw (output) Array to store the most significant
32-bits of the 64-bit time-tag data.

pCEI_INT32 timeTagLsw (output) Array to store the least significant
32-bits of the 64-bit time-tag data.

Program Interface Library AR_GET_BOARDNAME

CEI-x30 User's Manual 135

AR_GET_BOARDNAME
pCEI_CHAR ar_get_boardname (CEI_INT16 board, pCEI_CHAR
boardName)

This routine returns a character string describing the board name for the
specified device. It should only be invoked after successful invocation of
AR_LOADLSV.

NULL An uninitialized board or invalid board
value was provided.

For any valid detected board, the return value is a character string
description of board associated with the supplied board value:

 “AMC-A30”
 “CEI-430”
 “CEI-430A”
 “CEI-530”
 “CEI-830”
 “R830RX”
 “RAR-CPCI”
 “RAR-EC”“RAR-PCIE”

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

pCEI_CHAR boardName (output) If a valid board is detected and this
parameter is not NULL, the character
description of that board is copied to the
location referenced by this parameter. A
minimum of 10 bytes of allocation is
required for the destination array.

Syntax

Description

Return Value

Arguments

AR_GET_BOARDTYPE Program Interface Library

136 CEI-x30 User's Manual

AR_GET_BOARDTYPE
CEI_INT16 ar_get_boardtype (CEI_INT16 board)

This routine returns the API/device type for the specified device. It should
only be invoked after successful invocation of AR_LOADLSV.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

For any value less than ARS_INVBOARD, the return value indicates the
type of board associated with the supplied board value:

 CEI-830 (19)

 CEI-430 (21)

 AMC-A30 (22)

 CEI-530 (26)

 R830RX (27)

 RAR-CPCI (28)

 RAR-EC (29)

 RAR-PCIE (30)

 CEI-430A (31)

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GET_CONFIG

CEI-x30 User's Manual 137

AR_GET_CONFIG
CEI_INT32 ar_get_config (CEI_INT16 board, CEI_INT16 item)

This routine returns the active state of API information, board level
settings, and limited ARINC 429 channel configuration register bit fields.
It is provided for backward compatibility to CEI-x20 based applications.
The routine AR_GET_DEVICE_CONFIG is the desired routine for
acquiring information regarding channel and board-level configuration.

See the ARU_* definitions in the file CDEV_API.H for the most current
list of parameter options supported by this routine and the values
associated with those definitions.

If the requested item is ARU_RX_CHnn_BIT_RATE (500-531), where nn
is the receiver channel (01 - 32), this routine returns the current value of the
channel configuration register baud rate field:

AR_HIGH (0) high rate (100Kbs)
AR_LOW (1) low rate (12.5Kbs)
Any other value is returned as a frequency value in Hertz.

If the requested item is ARU_TX_CHnn_BIT_RATE (700-731), where nn
is the transmitter channel (01 - 32), this routine returns the current value of
the channel configuration register baud rate field:

AR_HIGH (0) high rate (100Kbs)
AR_LOW (1) low rate (12.5Kbs)
Any other value is returned as a frequency value in Hertz.

If the requested item is ARU_RX_CHnn_PARITY (900-931), where nn is
the receiver channel (01 - 32), this routine returns the current state of the
specified receiver channel configuration register parity field:

AR_ODD (0) receiver parity check enabled
AR_OFF (8) receiver parity check disabled

If the requested item is ARU_TX_CHnn_PARITY (1100-1131), where nn
is the transmitter channel (01 - 32), this routine returns the current state of
the specified transmitter channel configuration register parity field:

AR_ODD (0) odd transmitter parity
AR_EVEN (1) even transmitter parity

If the requested item is ARU_TX_CHnn_SHUT_OFF (1700-1731), where
nn is the transmitter channel (01 - 32), this routine returns the current state
of the specified transmitter channel configuration register transmit disable
field:

AR_ON (7) external transmission is disabled
AR_OFF (8) external transmission is enabled

Syntax

Description

Return Value

AR_GET_CONFIG Program Interface Library

138 CEI-x30 User's Manual

If the requested item is ARU_TX_CHnn_HB_INJ (3300-3331), where nn
is the transmitter channel (01 - 32), this routine returns the current state of
the specified transmitter channel configuration register high-bit error
injection field:

AR_ON (7) 33-bit transmission is enabled
AR_OFF (8) standard 32-bit transmission is enabled

If the requested item is ARU_TX_CHnn_LB_INJ (3500-3531), where nn
is the transmitter channel (01 - 32), this routine returns the current state of
the specified transmitter channel configuration register low-bit error
injection field:

AR_ON (7) 31-bit transmission is enabled
AR_OFF (8) standard 32-bit transmission is enabled

If the requested item is ARU_TX_CHnn_GAP_INJ (3700-3731), where nn
is the transmitter channel (01 - 32), this routine returns the current state of
the specified transmitter channel configuration register message gap error
injection field:

AR_ON (7) 3-bit message gap is used
AR_OFF (8) standard 4-bit message gap is used

If the requested item is ARU_CONFIGURATION (21), this routine returns
the value of the CEI-x30 Board Configuration, defined as follows:

CEIDEV_CONFIG_CEI830 (7) CEI-830
CEIDEV_CONFIG_CEI430 (8) CEI-430
CEIDEV_CONFIG_AMCA30 (9) AMC-A30
CEIDEV_CONFIG_CEI530 (10) CEI-530
CEIDEV_CONFIG_R830RX (11) R830RX
CEIDEV_CONFIG_RAR_CPCI (12) RAR-CPCI
CEIDEV_CONFIG_RAR_EC (13) RAR-EC
CEIDEV_CONFIG_RAR_PCIE (14) RAR-PCIE

If the requested item is ARU_RX_TIMETAG_MODE (440), this routine
returns a value representing the currently selected timer/time-tag source
and resolution. This value indicates the resolution of any timer-read or
receive data time-tag value obtained via the API, and is defined as follows:

AR_TIMETAG_EXT_IRIG_64BIT (0)
AR_TIMETAG_INT_USEC_64BIT (1)
AR_TIMETAG_INT_20USEC_32BIT (3)
AR_TIMETAG_INT_MSEC_32BIT (4)
AR_TIMER_X20_COMPAT_32BIT (5)

A value of AR_TIMETAG_EXT_IRIG_64BIT indicates the source
is the external IRIG receiver, if connected; otherwise, if the IRIG
signal is not internally wrapped this selection would be invalid. All
other values represent various timer/time-tag LSB resolution values
based on the internal CEI-x30 device timer.

Program Interface Library AR_GET_CONFIG

CEI-x30 User's Manual 139

If the requested item is ARU_ACCESS_SNAPSHOT_BUFFER (38), this
routine returns the currently selected Snapshot Buffer storage mode:

ARU_LABEL_ONLY (0) messages stored based on label
ARU_LABEL_WITH_SDI (1) messages stored based on the

combined label and SDI field values

If the requested item is ARU_IRIG_WRAP_ENABLE (441), this routine
returns the current state of the IRIG Receiver internal wrap feature:

AR_ON (7) IRIG Receiver is patched into the IRIG Generator
AR_OFF (8) IRIG Receiver is configured for external IRIG source

If the requested item is ARU_IRIG_AVAILALBE (445), this routine
returns TRUE if IRIG-B support is available, FALSE if it is not.

If the requested item is ARU_IRIG_CALIBRATED (447), this routine
verifies the ability to capture consecutive IRIG time samples at a one
second interval. If this results in a return status of FALSE (0), the IRIG
signal is not consistent; otherwise, a return value of TRUE (1) indicates the
signal is valid, or an error status (any value greater than 1) indicates a
failure occurred.

If the requested item is not on this list or in the list of valid items for
AR_GET_DEVICE_CONFIG, this routine will return a value of
ARS_INVARG.

If the requested item is not valid for the specified device, this routine
returns a value of ARS_INVHARCMD.

If the specified board is invalid or has not been initialized, this routine
returns ARS_INVBOARD.

If access to the Board Lock timed-out or failed, this routine returns
ARS_BOARD_MUTEX.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

CEI_INT16 item (input) Control function about which to
return information:

ARU_RX_CH01_BIT_RATE –
ARU_RX_CH32_BIT_RATE receiver 1 – 32 bit rate selection.

ARU_TX_CH01_BIT_RATE –
ARU_TX_CH32_BIT_RATE transmitter 1 – 32 bit rate selection.

ARU_RX_CH01_PARITY –
ARU_RX_CH32_PARITY receiver 1 – 32 parity state.

ARU_TX_CH01_PARITY –
ARU_TX_CH32_PARITY transmitter 1 – 32 parity state.

Arguments

AR_GET_CONFIG Program Interface Library

140 CEI-x30 User's Manual

ARU_TX_CH01_SHUT_OFF –
ARU_TX_CH32_SHUT_OFF transmitter 1 – 32 enable state.

ARU_TX_CH01_LB_INJ – transmitter 1 – 32 low bit error
ARU_TX_CH32_LB_INJ enable state.

ARU_TX_CH01_HB_INJ – transmitter 1 – 32 high bit error
ARU_TX_CH32_HB_INJ enable state.

ARU_TX_CH01_GAP_INJ – transmitter 1 – 32 message
ARU_TX_CH32_GAP_INJ gap error enable state.

ARU_IRIG_AVAILABLE IRIG Receiver installed state.
ARU_IRIG_WRAP_ENABLE IRIG Receiver internal wrap state.
ARU_IRIG_CALIBRATED IRIG signal validity.
ARU_ACCESS_SNAPSHOT_BUFFER snapshot storage mode.
ARU_FW_VERSION Hardware Version reg. value.
ARU_CONFIGURATION configuration of the device.
ARU_RX_TIMETAG_MODE active timer/time-tagging mode.

Program Interface Library AR_GET_DATA

CEI-x30 User's Manual 141

AR_GET_DATA
CEI_INT16 ar_get_data (CEI_INT16 board, pCEI_INT16 channel,
pCEI_UINT32 data, pCEI_UINT32 timeTagLo, pCEI_UINT32
timeTagHi)

This routine retrieves the next unread message and 64-bit time-tag from the
specified receive channel. If it successfully returns data, there may or may
not be more data in the buffer. It means only that there was at least one
message in the buffer. Subsequent calls are required to determine if more
data words are available in the buffer. If this routine returns a status value
of ARS_NODATA, the buffer is empty.

If the specified channel was configured for merged mode operation along
with other receive channels, this routine returns the next unread message
from the merged receive buffer and indicate on which channel the message
was received via the channel parameter.

ARS_GOTDATA A message and time-tag have been received.

ARS_NODATA No data available.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board
value was provided .

ARS_INVHARVAL The channel is not available on the device.

CEI_INT16 board (input) Device this routine is to access.
Valid range is 0-15.

pCEI_INT16 channel (input/output) As an input, specifies which
hardware receive channel this routine is to
access, (see the description of the Receive
Channel Select Register – 0x0040 for the
list of valid hardware receive channel
values) . As an output, indicates the receive
channel number on which the data was
received (for merged-mode channel
reporting).

pCEI_UINT32 data (output) Address that is to receive the data.

Syntax

Description

Return Value

Arguments

AR_GET_DATA Program Interface Library

142 CEI-x30 User's Manual

pCEI_UINT32 timeTagLo (output) Address that is to receive the least-
significant 32 bits of the 64-bit time-tag
associated with the data, (resolution of the
combined time-tag words is 1 µsec).

pCEI_UINT32 timeTagHi (output) Address that is to receive the most-
significant 32 bits of the 64-bit time-tag
associated with the data, (resolution of the
combined time-tag words is 1 µsec).

Program Interface Library AR_GET_DATA_XT

CEI-x30 User's Manual 143

AR_GET_DATA_XT
CEI_INT16 ar_get_data (CEI_INT16 board, pCEI_INT16 channel,
pCEI_INT32 data, pAR_TIMETAG_TYPE timeTagRef)

This routine retrieves the next unread message and the associated time-tag
structure from the specified receive channel. If it successfully returns data,
there may or may not be more data in the buffer. It means only that there
was at least one message in the buffer. Subsequent calls are required to
determine if more data words are available in the buffer. If this routine
returns a status value of ARS_NODATA, the buffer is empty.

If the specified channel was configured for merged mode operation along
with other receive channels, this routine returns the next unread message
from the merged receive buffer and indicate on which channel the message
was received via the channel parameter.

ARS_GOTDATA A message and time-tag have been received.

ARS_NODATA No data available.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_INVHARVAL The channel is not available on the device.

CEI_INT16 board (input) Device this routine is to access.
Valid range is 0-15.

pCEI_INT16 channel (input/output) As an input, specifies which
hardware receive channel this routine is to
access, (see the description of the Hardware
Channel Assignments for the list of valid
hardware receive channel values) . As an
output, indicates the receive channel number
on which the data was received (for merged-
mode channel reporting).

pCEI_INT32 data (output) Address that is to receive the data.

pAR_TIMETAG_TYPE timeTagRef (output)

 The address that is to receive the time-tag
data structure associated with the data.

Syntax

Description

Return Value

Arguments

AR_GET_DEVICE_CONFIG Program Interface Library

144 CEI-x30 User's Manual

AR_GET_DEVICE_CONFIG
CEI_INT16 ar_get_device_config (CEI_INT16 board, CEI_INT16
channel, CEI_INT16 item, pCEI_INT16 value)

This routine returns the state of the device configuration register attribute
based on the combined item/value parameters. It is designed to support all
ARINC 429 channel configuration register bit fields available to the
device.

ARS_NORMAL Routine execution was successful.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board
value was provided .

ARS_INVARG The item argument value is not supported by
this API routine.

ARS_INVHARVAL The item argument value is not supported by
this device configuration.

ARS_HW_CONSISTENCY Indicates the board is compatible with the
CEI-x30 Enhanced Operations (Version 2.00
API or later).

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

CEI_INT16 channel (input) Specifies which channel this routine
is to access. Valid range is 0 to one less than
the installed channel count for the specified
channel type. For board-level configuration
items, this parameter is not used.

CEI_INT16 item (input) configuration register attribute for
which to return the current state:

ARU_RX_PARITY receive channel parity enable.
ARU_RX_BITRATE receive channel bit rate.
ARU_RX_FIFO_ENABLE receive channel enable.
ARU_RX_DISABLE receive channel enable.
ARU_RECV_MODE receiver internal wrap.
ARU_RX_MERGED_MODE receiver merged mode enable.
ARU_TX_BITRATE transmit channel bit rate.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GET_DEVICE_CONFIG

CEI-x30 User's Manual 145

ARU_TX_PARITY transmit channel parity select.
ARU_TX_FIFO_ENABLE transmit channel enable.
ARU_TX_DISABLE transmit channel transceiver disable.
ARU_TX_BIT_ERROR transmit channel bit error enable.
ARU_TX_GAP_ERROR transmit channel gap error enable.
ARU_FAST_SLEW_RATE transmit channel slew rate select.
ARU_ACCESS_SNAPSHOT_BUFFER snapshot storage mode.
ARU_IRIG_WRAP_ENABLE IRIG receiver internal wrap state.
ARU_IRIG_AVAILALBE IRIG receiver installed state.
ARU_IRIG_OUTPUT_ENABLE R830RX IRIG Tx state.
ARU_IRIG_INPUT_TIME IRIG received sample value.
ARU_IRIG_CALIBRATED IRIG signal validity.
ARU_DEVICE_DISABLE CEI-430 device disabled state.
ARU_DISCRETE_IN discrete input state.
ARU_DIFFERENTIAL_IN differential input state.
ARU_DIFFERENTIAL_OUT differential output enable state.
ARU_RX_TIMETAG_MODE active timer/time-tagging mode.
ARU_CHAN_COUNT_429 ARINC 429 Tx channel count.
ARU_CHAN_COUNT_573 ARINC 573/717 channel count.
ARU_CHAN_COUNT_DISC discrete I/O channel count.
ARU_CHAN_COUNT_DIFF differential I/O channel count.
ARU_RX_FIFO_COUNT receive FIFO buffer fill count.
ARU_TX_FIFO_COUNT transmit FIFO buffer fill count.
ARU_RX_MSG_COUNT receive message count.
ARU_TX_MSG_COUNT transmit message count.
ARU_FW_VERSION current programmed firmware.
ARU_HW_ENHANCE_CHECK current device BAR2 size.
ARU_HW_INTERRUPT_ENABLE current PCI interrupt state

pCEI_INT16 value (output) state of the configuration register
attribute:

If the requested item is ARU_RX_FIFO_ENABLE (16) ,
ARU_RX_DISABLE (9), or ARU_TX_FIFO_ENABLE (17), this routine
will return the current value of the specified channel configuration register
FIFO Enable field:

AR_ON (7) FIFO operation enabled
AR_OFF (8) FIFO operation disabled

If the requested item is ARU_RX_BITRATE (1) or ARU_TX_BITRATE
(2), this routine will return the current value of the specified channel
configuration register baud rate field:

ARU_SPEED_HIGH (0) high rate (100Kbs)
ARU_SPEED_LOW (1) low rate (12.5Kbs)

Any other value is translated as a non-standard bus speed value
divisor for the 16MHz device clock reference. This value and the
respective baud rate may be interpreted using the following formula:

AR_GET_DEVICE_CONFIG Program Interface Library

146 CEI-x30 User's Manual

 Baud Rate = 16,000,000 / (Value+2)

If the requested item is ARU_RX_PARITY (3), this routine returns the
current state of the specified receive channel configuration register parity
field:

AR_ ON (7) receiver parity check enabled
AR_OFF (8) receiver parity check disabled

If the requested item is ARU_TX_PARITY (4), this routine returns the
current state of the specified transmitter channel configuration register
parity field:

ARU_PARITY_ODD (0) odd transmitter parity
ARU_PARITY_EVEN (1) even transmitter parity
ARU_PARITY_NONE (2) transmitter parity disabled

If the requested item is ARU_RECV_MODE (5), this routine returns the
current state of the specified receive channel configuration register Internal
Wrap Enable field:

AR_WRAP_ON (0) internal wrap reception enabled
AR_WRAP_OFF (1) internal wrap reception disabled

If the requested item is ARU_RX_MERGED_MODE (18), this routine
returns the current state of the specified receive channel configuration
register Merge Mode enable field:

AR_ON (7) Merged Mode enabled
AR_OFF (8) Merged Mode disabled

If the requested item is ARU_TX_DISABLE (10), this routine returns the
current state of the specified receive channel configuration register
Transmit Disable field:

AR_ON (7) external transmission disabled
AR_OFF (8) external transmission enabled

If the requested item is ARU_TX_BIT_ERROR (6), this routine returns
the current state of the specified transmitter channel configuration register
Bit Count Hi and Low fields:

AR_LO (0) Bit Count Low enabled
AR_HI (1) Bit Count High enabled
AR_OFF (8) both Bit Count Low and High disabled

If the requested item is ARU_TX_GAP_ERROR (8), this routine returns
the current state of the specified transmitter channel configuration register
Gap Error field:

AR_ON (7) Gap Error enabled
AR_OFF (8) Gap Error disabled

If the requested item is ARU_FAST_SLEW_RATE (323), this routine
returns the current state of the specified transmitter channel configuration
register Slew Rate field:

AR_ON (7) Fast Slew Rate selected (1.5 µsec rise time)

Program Interface Library AR_GET_DEVICE_CONFIG

CEI-x30 User's Manual 147

AR_OFF (8) Slow Slew Rate selected (10 µsec rise time)

If the requested item is ARU_ACCESS_SNAPSHOT_BUFFER (38), this
routine returns the current state of the device snapshot storage mode:

ARU_LABEL_ONLY (0) message storage on a label basis
ARU_LABEL_WITH_SDI (1) message storage on a combined
 label/SDI basis.

If the requested item is ARU_IRIG_AVAILALBE (445), this routine
returns TRUE if IRIG-B support is available, FALSE if it is not.

If the requested item is ARU_IRIG_OUTPUT_ENABLE (26), this routine
returns the enable state of the R830RX IRIG Generator Enable:

AR_ON (7) IRIG output is enabled
AR_OFF (8) IRIG output is disabled

If the requested item is ARU_IRIG_INPUT_TIME (27), this routine
returns the most recent received IRIG received sample value.

If the requested item is ARU_IRIG_WRAP_ENABLE (441), this routine
returns the current state of the IRIG Receiver internal wrap feature:

AR_ON (7) IRIG Receiver is patched into the IRIG Generator
AR_OFF (8) IRIG Receiver is configured for external IRIG source

If the requested item is ARU_IRIG_CALIBRATED (447), this routine
verifies the ability to capture consecutive IRIG time samples at a one
second interval. If this results in a return status of FALSE (0), the IRIG
signal is not consistent; otherwise, a return value of TRUE (1) indicates the
signal is valid, or an error status (any value greater than 1) indicates a
failure occurred.

If the requested item is ARU_DISCRETE_IN (14), this routine returns the
current state of the specified discrete I/O channel:

AR_HI (1) the discrete is High
AR_LO (0) the discrete is Low

If the requested item is ARU_DIFFERENTIAL_IN (22), this routine
returns the current state of the specified differential I/O channel:

AR_HI (1) the differential input is High
AR_LO (0) the differential input is Low

If the requested item is ARU_ DIFFERENTIAL _OUT (23), this routine
returns the enable state of the specified differential I/O channel:

AR_ON (7) the differential output enabled
AR_OFF (8) the differential output disabled

If the requested item is ARU_RX_TIMETAG_MODE (440), this routine
returns a value representing the currently selected timer/time-tag source
and resolution. This value indicates the resolution of any timer-read or
receive data time-tag value obtained via the API, and is defined as follows:

AR_GET_DEVICE_CONFIG Program Interface Library

148 CEI-x30 User's Manual

AR_TIMETAG_EXT_IRIG_64BIT (0)
AR_TIMETAG_INT_USEC_64BIT (1)
AR_TIMETAG_INT_20USEC_32BIT (3)
AR_TIMETAG_INT_MSEC_32BIT (4)
AR_TIMER_X20_COMPAT_32BIT (5)

A value of AR_TIMETAG_EXT_IRIG_64BIT indicates the source
is the external IRIG receiver, if connected; otherwise, if the IRIG
signal is not internally wrapped this selection would be invalid. All
other values represent various timer/time-tag LSB resolution values
based on the internal CEI-x30 device timer.

If the requested item is ARU_CONFIGURATION (21), this routine returns
the value of the CEI-x30 Board Configuration, defined as follows:

CEIDEV_CONFIG_CEI830 (7) CEI-830
CEIDEV_CONFIG_CEI430 (8) CEI-430
CEIDEV_CONFIG_AMCA30 (9) AMC-A30
CEIDEV_CONFIG_CEI530 (10) CEI-530
CEIDEV_CONFIG_R830RX (11) R830RX
CEIDEV_CONFIG_RAR_CPCI (12) RAR-CPCI
CEIDEV_CONFIG_RAR_EC (13) RAR-EC
CEIDEV_CONFIG_RAR_PCIE (14) RAR-PCIE
CEIDEV_CONFIG_CEI430A (15) CEI-430A

If the requested item is ARU_DEVICE_DISABLE (39), this routine
returns the current value of the CEI-430 Global Enable Register – Device
Disabled bit.

If the requested item is ARU_CHAN_COUNT_429 (448), this routine
returns the ARINC 429 transmit channel count detected on the board.

If the requested item is ARU_CHAN_COUNT_573 (449), this routine
returns the ARINC 573/717 transmit channel count detected on the board.

If the requested item is ARU_CHAN_COUNT_ DISC (450), this routine
returns the discrete output channel count detected on the board.

If the requested item is ARU_CHAN_COUNT_ DIFF (451), this routine
returns the differential output channel count detected on the board.

If the requested item is ARU_TX_FIFO_COUNT (19), this routine returns
the current buffer count of messages in the specified ARINC 429 transmit
FIFO awaiting transmission.

If the requested item is ARU_RX_FIFO_COUNT (28), this routine returns
the current buffer count of messages in the ARINC 429 receive FIFO
available to be read by the host application.

Program Interface Library AR_GET_DEVICE_CONFIG

CEI-x30 User's Manual 149

If the requested item is ARU_RX_MSG_COUNT (35), this routine returns
the number of messages received on this channel since the board was last
initialized.

If the requested item is ARU_TX_MSG_COUNT (36), this routine returns
the number of messages transmitted on this channel since the board was
last initialized.

If the requested item is ARU_FW_VERSION (20), this routine returns the
current programmed firmware.

If the requested item is ARU_HW_ENHANCE_CHECK (30), this routine
returns either ARS_NORMAL to indicate the board is compatible with the
CEI-x30 Enhanced Operations (Version 2.00 API), or
ARS_HW_CONSISTENCY to indicate it is not.

If the requested item is ARU_HW_INTERRUPT_ENABLE (29), this
routine returns the current state of the PCI Interrupt Enable bit:

AR_ON (7) PCI Interrupts are enabled
AR_OFF (8) PCI Interrupts are disabled

AR_GET_573_CONFIG Program Interface Library

150 CEI-x30 User's Manual

AR_GET_573_CONFIG
CEI_INT16 ar_get_573_config (CEI_INT16 board, CEI_INT16 item,
pCEI_INT32 value)

This routine returns the state of the device configuration register attribute
based on the combined item/value. It is designed to support the ARINC
573/717 configuration register attributes available to the device.

ARS_NORMAL Routine execution was successful.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board
value was provided .

ARS_INVARG The item argument value is not supported by
this API routine.

ARS_INVHARVAL The item argument value is not supported by
this device configuration.

CEI_INT16 board (input) Device this routine is to access.
Valid range is 0-15.

CEI_INT16 item (input) Configuration item about which to
return information:

ARU_RECV_MODE receiver internal wrap.
ARU_RX_BITRATE receive channel bit rate.
ARU_RX_FIFO_ENABLE receive channel enable.
ARU_RX_MERGED_MODE receiver merged mode enable
ARU_573_RX_AUTO_DETECT receiver frame auto-detect enable.
ARU_573_RX_BPRZ_SELECT receiver BPRZ/HBP selection.
ARU_TX_BITRATE transmit channel bit rate.
ARU_TX_FIFO_ENABLE transmit channel enable.
ARU_573_TX_BPRZ_SELECT transmitter BPRZ encoder enable.
ARU_573_TX_HBP_SELECT transmitter HBP encoder enable.
ARU_573_TX_SLEW_RATE transmitter slew rate select.
ARU_TX_FIFO_COUNT transmit FIFO buffer fill count.
ARU_573_SYNC_WORD1 receiver auto-detect sync word 1.
ARU_573_SYNC_WORD2 receiver auto-detect sync word 2.
ARU_573_SYNC_WORD3 receiver auto-detect sync word 3.
ARU_573_SYNC_WORD4 receiver auto-detect sync word 4.

pCEI_INT32 value (output) The address that receives the state
of the item requested:

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GET_573_CONFIG

CEI-x30 User's Manual 151

If the requested item is ARU_RECV_MODE (5), this routine returns the
current state of the ARINC 573/717 receive
channel Internal Wrap Enable:

AR_WRAP_ON (0) internal wrap reception enabled
AR_WRAP_OFF (1) internal wrap reception disabled

If the requested item is ARU_RX_FIFO_ENABLE (16) or
ARU_TX_FIFO_ENABLE (17), then this routine will return the current
value of the ARINC 573/717 channel FIFO Enable:

AR_ON (7) FIFO operation enabled
AR_OFF (8) FIFO operation disabled

If the requested item is ARU_RX_MERGED_MODE (18), this routine
returns the current state of the ARINC 573/717 receive channel Merge
Mode Enable:

AR_ON (7) Merge mode enabled
AR_OFF (8) Merge mode disabled

If the requested item is ARU_573_RX_AUTO_DETECT (301), this
routine returns the current state of the ARINC 573/717 receive channel
Auto-synchronization Enable:

AR_ON (7) ARINC 573/717 frame auto-detection enabled
AR_OFF (8) ARINC 573/717 frame auto-detection disabled

If the requested item is ARU_573_RX_BPRZ_SELECT (302), this routine
returns the current state of the ARINC 573/717 receive channel Encoding
Enable:

AR_ON (7) ARINC 573/717 BPRZ encoding enabled
AR_OFF (8) ARINC 573/717 HBP encoding enabled

If the requested item is ARU_RX_BITRATE (1) or ARU_TX_BITRATE
(2), this routine returns the current state of the ARINC 573/717 channel
Baud Rate/Subframe Size selection (ranging from 0 to 7):

ARU_573_RATE_SIZE_384_32 384 bps, 32 word sub-frame

ARU_573_RATE_SIZE_768_64 768 bps, 64 word sub-frame

ARU_573_RATE_SIZE_1536_128 1536 bps, 128 word sub-frame

ARU_573_RATE_SIZE_3072_256 3072 bps, 256 word sub-frame

ARU_573_RATE_SIZE_6144_512 6144 bps, 512 word sub-frame

ARU_573_RATE_SIZE_12288_1024 12288 bps, 1024 word sub-frame

ARU_573_RATE_SIZE_24576_2048 24576 bps, 2048 word sub-frame

ARU_573_RATE_SIZE_49152_4096 49152 bps, 4096 word sub-frame

If the requested item is ARU_573_TX_BPRZ_SELECT (313), this routine
returns the current state of the ARINC 573/717 transmit channel Encoding
Enable:

AR_ON (7) ARINC 573/717 BPRZ encoding enabled

AR_GET_573_CONFIG Program Interface Library

152 CEI-x30 User's Manual

AR_OFF (8) ARINC 573/717 BPRZ encoding disabled

If the requested item is ARU_573_TX_HBP_SELECT (314), this routine
returns the current state of the ARINC 573/717 transmit channel Encoding
Enable:

AR_ON (7) ARINC 573/717 HBP encoding enabled
AR_OFF (8) ARINC 573/717 HBP encoding disabled

If the requested item is ARU_573_TX_SLEW_RATE (305) this routine
returns the current state of the ARINC 573/717 transmit channel Slew Rate
selection:

ARU_573_TX_SLEW_1PT5 (1) 1.5µsec rise time
ARU_573_TX_SLEW_10PT0 (0) 10.0µsec rise time

If the requested item is ARU_TX_FIFO_COUNT (19), this routine returns
the current buffer count of messages in the ARINC 717 transmit FIFO
awaiting transmission.

If the requested item is ARU_573_SYNC_WORD1 (307),
ARU_573_SYNC_WORD2 (308), ARU_573_SYNC_WORD3 (309), or
ARU_573_SYNC_WORD4 (310), this routine returns the 12-bit value for
the respective receiver sub-frame sync word.

Program Interface Library AR_GET_ERROR

CEI-x30 User's Manual 153

AR_GET_ERROR
pCEI_CHAR ar_get_error (CEI_INT16 status)

Most of the API routines return status values, a majority of which indicate
an error condition. When supplied with such an error value, this routine
returns a pointer to a message string describing the error.

Review the section, “Return Status Values”, for the current list of possible
error codes and their explanations.

A pointer to the error message character string.

CEI_INT16 status (input) a status value returned by any of the
API utilities.

Syntax

Description

Return Value

Arguments

AR_GETFILTER Program Interface Library

154 CEI-x30 User's Manual

AR_GETFILTER
CEI_INT32 ar_getfilter (CEI_UINT32 board, CEI_UINT32 channel,
pCEI_CHAR filterTable)

This routine returns the contents of a single channel label filter table from
the device. Each receive channel has a separate section within the label
filter table, is used by the firmware to control FIFO storage of received
labels and generate hardware interrupts. Each element of the filter buffer
consists of a bit field defined for compatibility with the CEI-x20 product
line as follows:
FILTER_SEQUENTIAL 0x10 If CLEAR add label to Sequential receive buffer
FILTER_SNAPSHOT 0x20 If CLEAR add label to Snapshot receiver buffer
FILTER_INTERRUPT 0x40 If SET on reception insert the respective receive

channel tag (ranging from 64-95) in the interrupt queue and if
enabled generate a PCI interrupt.

The filter buffer for a single channel is defined as follows:

 filterTable[MAX_ESSM][MAX_SDI][MAX_LABEL]

and accessed as:

filterTable[eSSM][SDI][label]

where the bits of the ARINC word are split up as follows:

eSSM SDI label
30, 29, 28 9, 8 7, 6, 5, 4, 3, 2, 1, 0

To write an entry to the label interrupt and filter table, refer to the API
routines AR_ENH_LABEL_FILTER, AR_PUTFILTER, and
AR_LABEL_FILTER.

ARS_NORMAL Routine execution was successful.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board
value was provided .

ARS_INVARG Invalid channel or filterTable parameter.

Syntax

Description

Return Value

Program Interface Library AR_GETFILTER

CEI-x30 User's Manual 155

CEI_UINT32 board (input) Device to access. Valid range is 0-
15.

CEI_UINT32 channel (input) Specifies which receive channel this
routine is to access. Valid range is 0 to one
less than the installed receive channel count.

pCEI_CHAR filterTable (input) Array to receive the contents of the
specified channel’s label filter table. This
array must have a minimum allocation of
8Kbytes.

Arguments

AR_GET_LABEL_FILTER Program Interface Library

156 CEI-x30 User's Manual

AR_GET_LABEL_FILTER
CEI_INT16 ar_get_label_filter (CEI_INT16 board, CEI_UINT16 label)

This routine returns the active state of label filtering for the specified label
on each of the first sixteen installed receive channels.

Given the routine is supplied with a valid board and label value, the return
value indicates the active state of the specified label on each receive
channel through the respective bit state, where the label filter state on
receive channel zero (zero-referenced) is indicated via b0 as “1” to indicate
the label is filtered and “0” to indicate either the label is not filtered or the
receive channel is not installed. Subsequent bits in the value indicate the
label filter state for the respective receive channel.

A label is indicated to be “filtered” if the respective entry in the Label
Filter Table is defined to filter the label from either the Sequential (FIFO)
or Snapshot buffers.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

CEI_UINT16 label (input) Specifies which label to query. Valid
range is 0 to 255.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GET_LATEST

CEI-x30 User's Manual 157

AR_GET_LATEST
CEI_VOID ar_get_latest (CEI_INT16 board, CEI_INT16 channel,
CEI_UINT16 label, pCEI_VOID data, pCEI_CHAR seq_num)

In support of backward compatibility to previous ARINC product APIs,
this routine returns the latest ARINC 429 message received for the
specified channel/label combination from the snapshot buffer.

If the label parameter value requested is either 256 or the value
ARU_ALL_LABELS (511), this routine treats the data parameter as an
array reference and returns the most recent received ARINC message for
all 256 valid ARINC labels for the specified channel, in successive data
array elements. This function assumes that the caller has allocated at least
1024 bytes for data when used in this mode.

When using this routine, the host application should set the snapshot
storage mode to label field only, (see the documentation on the routine
AR_SET_DEVICE_CONFIG, for the configuration option
ARU_ACCESS_SNAPSHOT_BUFFER). This sets up the x30 device to
store snapshot data based on the label field value only, ignoring the SDI bit
field value.

If no message has been received for the specified channel/label since the
last initialization of the device, a data value of zero will be returned.

CEI_INT16 board (input) Device this routine is to access.
Valid range is 0-15.

CEI_INT16 channel (input) Specifies which channel this routine
is to access. Valid range is 0 to one less than
the installed receive channel count.

CEI_UINT16 label (input) The label value of interest.

pCEI_VOID data (output) Location to store 32-bit ARINC
data.

pCEI_CHAR seq_num (output) Unsupported legacy parameter.

Syntax

Description

Arguments

AR_GET_LATEST_T Program Interface Library

158 CEI-x30 User's Manual

AR_GET_LATEST_T
CEI_INT32 ar_get_latest_t (CEI_INT16 board, CEI_INT16 channel,
CEI_UINT16 label, pCEI_UINT32 data, TIME_TAG_TYPE * timeTag)

This routine returns the latest ARINC 429 message and time-stamp
received for the specified channel/label combination from the snapshot
buffer.

When using this routine, the host application should set the snapshot
storage mode to label field only, (see the documentation on the routine
AR_SET_DEVICE_CONFIG, for the configuration option
ARU_ACCESS_SNAPSHOT_BUFFER). This sets up the x30 device to
store the ARINC message and time-stamp in the snapshot buffer based on
the label field value only, ignoring the SDI bit field value.

If no message has been received for the specified channel/label since the
last initialization of the device, a data value of zero is returned for the
message and time-stamp. If the timeTag parameter is NULL, no time-
stamp information is returned.

ARS_NORMAL Routine execution was successful.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_INVARG Invalid label or null data parameter.

ARS_INVHARVAL Channel is not available on device.

CEI_INT16 board (input) Device this routine is to access.
Valid range is 0-15.

CEI_INT16 channel (input) Specifies which channel this routine
is to access. Valid range is 0 to one less than
the installed receive channel count.

CEI_UINT16 label (input) The label value of interest.

pCEI_UINT32 data (output) Location to store ARINC message.

TIME_TAG_TYPE * timeTag (output) The address that is to receive the
64-bit message time-stamp, the format of
which is determined by the current API
time-tag format.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GETNEXT

CEI-x30 User's Manual 159

AR_GETNEXT
CEI_INT16 ar_getnext (CEI_INT16 board, CEI_INT16 channel,
pCEI_VOID destination)

This routine retrieves the next unread message from the specified receive
channel. If no message is present in the receiver FIFO buffer upon
invocation, this routine polls the buffer waiting for the presence of a
received message for up to one-half second. If no message is present after
one-half second, a time-out status is returned.

ARS_GOTDATA A message has been retrieved.

ARS_CHAN_TIMEOUT No message was available or received.

ARS_BAD_MESSAGE An invalid length ARINC 429 message was
received on the specified channel.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board
value was provided .

ARS_INVARG Invalid destination parameter.

ARS_INVHARVAL Channel is not available on device.

CEI_INT16 board (input) Device this routine is to access.
Valid range is 0-15.

CEI_INT16 channel (input) Specifies which channel this routine
is to access. Valid range is 0 to one less than
the installed receive channel count.

pCEI_VOID destination (output) The address that is to receive the
message.

Syntax

Description

Return Value

Arguments

AR_GETNEXTT Program Interface Library

160 CEI-x30 User's Manual

AR_GETNEXTT
CEI_INT16 ar_getnextt (CEI_INT16 board, CEI_INT16 channel,
pCEI_VOID destination, pCEI_VOID timetag)

This routine retrieves the next unread message and scaled 32-bit time-
stamp from the specified receive channel. If no message is present in the
receiver FIFO buffer when invoked this routine polls the buffer waiting for
the presence of a received message for up to one-half second. If no
message is present after one-half second, a time-out status is returned.

If the timetag parameter is not NULL, the 32-bit translation of the 64-bit
message time-stamp will be returned, scaled to the active legacy 32-bit
time-tag mode, (1 millisecond resolution by default).

ARS_GOTDATA A message has been retrieved.

ARS_CHAN_TIMEOUT No message was available or received.

ARS_BAD_MESSAGE An invalid length ARINC 429 message was
received.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_INVARG Invalid destination parameter.

ARS_INVHARVAL Channel is not available on device.

CEI_INT16 board (input) Device this routine is to access.
Valid range is 0-15.

CEI_INT16 channel (input) Specifies which channel this routine
is to access. Valid range is 0 to one less than
the installed receive channel count.

pCEI_VOID destination (output) The address that is to receive the
message.

pCEI_VOID timetag (output) The address that is to receive the
32-bit time-tag associated with the data,
(resolution is programmable). If the merged
receive mode is active for the specified
channel, the upper five bits of the 32-bit
time-tag word contain the receive channel
number on which the data was received.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GETNEXT_XT

CEI-x30 User's Manual 161

AR_GETNEXT_XT
CEI_INT16 ar_getnext_xt (CEI_INT16 board, CEI_INT16 channel,
pCEI_UINT32 data, pAR_TIMETAG_TYPE timeTagRef)

This routine retrieves the next unread message and the associated time-tag
structure from the specified receive channel. If no message is present in
the receiver FIFO buffer when invoked, this routine polls the buffer
waiting for the presence of a received message for up to one-half second.
If no message is present after one-half second, a time-out status is returned.

If the timeTagRef parameter is not NULL, the time-tag structure containing
the message time-stamp will be returned.

ARS_GOTDATA A message has been retrieved.

ARS_CHAN_TIMEOUT No message was available or received.

ARS_BAD_MESSAGE An invalid length ARINC 429 message was
received.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_INVARG Invalid data parameter.

ARS_INVHARVAL Channel is not available on device.

CEI_INT16 board (input) Device this routine is to access.
Valid range is 0-15.

CEI_INT16 channel (input) Specifies which channel this routine
is to access. Valid range is 0 to one less than
the installed receive channel count.

pCEI_UINT32 data (output) The address that is to receive the
message.

pAR_TIMETAG_TYPE timeTagRef (output)

 The address that is to receive the time-tag
data structure associated with the message.

Syntax

Description

Return Value

Arguments

AR_GET_RX_COUNT Program Interface Library

162 CEI-x30 User's Manual

AR_GET_RX_COUNT
CEI_UINT32 ar_get_rx_count (CEI_INT16 board, CEI_INT16 channel)

The device maintains a count of the number of ARINC data messages
received over the interface for each channel since the device was last
initialized (see AR_LOADSLV). This routine returns that number.

If the API routine AR_CLR_RX_COUNT has been invoked by the host
application prior to this routine’s invocation, the API logs the current value
of the message count and returns the difference between that value and the
value read from the device upon invocation.

Current count of ARINC messages received on the specified channel.

CEI_INT16 board (input) Device this routine is to access.
Valid range is 0-15.

CEI_INT16 channel (input) Specifies which receive channel this
routine is to access.

Syntax

Description

Return Value
Arguments

Program Interface Library AR_GET_SNAP_DATA

CEI-x30 User's Manual 163

AR_GET_SNAP_DATA
CEI_INT32 ar_get_snap_data (CEI_INT16 board, CEI_INT16 channel,
CEI_UINT16 label, CEI_UINT16 sdi, pCEI_UINT32 data)

This routine returns the latest ARINC 429 message received for the
specified channel/label combination from the snapshot buffer.

When using this routine, the host application should set the snapshot
storage mode to label/sdi storage, (see the documentation on the routine
AR_SET_DEVICE_CONFIG, for the configuration option
ARU_ACCESS_SNAPSHOT_BUFFER). This sets up the x30 device to
store snapshot data based on the label field value in combination with the
SDI bit field value.

If no message has been received for the specified channel/label since the
last initialization of the device, a data value of zero is returned for the
message.

ARS_NORMAL Routine execution was successful.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_INVARG Invalid label, sdi,or null data parameter.

ARS_INVHARVAL Channel is not available on device.

CEI_INT16 board (input) Device this routine is to access.
Valid range is 0-15.

CEI_INT16 channel (input) Specifies which channel this routine
is to access. Valid range is 0 to one less than
the installed receive channel count.

CEI_UINT16 label (input) The label value of interest.

CEI_UINT16 sdi (input) The SDI value of interest.

pCEI_UINT32 data (output) Location to store 32-bit ARINC
data.

Syntax

Description

Return Value

Arguments

AR_GET_STATUS Program Interface Library

164 CEI-x30 User's Manual

AR_GET_STATUS
CEI_UINT32 ar_get_status (CEI_INT16 board, pCEI_UINT16 state)

This routine returns the state of the FIFO Data Available bit for up to 16
receivers in a bitwise 16-bit value.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board
value was provided .

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

pCEI_UINT16 state (output) Location to store the receiver FIFO
status. The Status Register Bit Assignments
are defined as follows, ("1" indicates Data
Available, “0” indicates No Data Available):

b0 - ARINC 429 Receiver 1
b1 - ARINC 429 Receiver 2
 …
b14 - ARINC 429 Receiver 15
b15 - ARINC 429 Receiver 16

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GET_STORAGE_MODE

CEI-x30 User's Manual 165

AR_GET_STORAGE_MODE
CEI_INT16 ar_get_storage_mode (CEI_INT16 board, pCEI_INT16 mode)

This routine is designed to provide compatibility with the CEI-x20 ARINC
device API. It returns the current state of the API receive storage mode.
When the API receive storage mode is buffered, each receiver is assigned
an independent circular buffer for data storage (merged mode is disabled).
When the storage mode is merged, all receivers are set to enable merged
receive mode and data received on each is stored in the merged FIFO
buffer. Each receive data API routine processes the active storage mode
internally, acquiring data from the appropriate buffer. Since each receive
channel can be independently programmed to store data in buffered or
merged mode through AR_SET_DEVICE_CONFIG, this routine should
only be used in conjunction with the AR_SET_STORAGE_MODE
routine.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

pCEI_INT16 mode (output) The address that is to receive the
state of the current API storage mode. Valid
return values for this parameter are:

ARU_BUFFERED (0) buffered receive mode

ARU_MERGED (2) merged receive mode

Syntax

Description

Return Value

Arguments

AR_GET_TIME Program Interface Library

166 CEI-x30 User's Manual

AR_GET_TIME
CEI_INT16 ar_get_time (CEI_INT16 board, CEI_INT16 format,
pAR_TIMETAG_TYPE timeTag)

This routine returns the current time reference value scaled from either the
CEI-x30 device internal 64-bit timer or the most recently received IRIG
timer reference, as specified via the format parameter.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_INVARG An invalid format parameter value was
provided.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

CEI_INT16 format (input) Time format requested. Valid
options are:

AR_TIMETAG_EXT_IRIG_64BIT 0
AR_TIMETAG_INT_USEC_64BIT 1
AR_TIMETAG_HOST_USEC_64BIT 2
AR_TIMETAG_INT_20USEC_32BIT 3
AR_TIMETAG_INT_MSEC_32BIT 4
AR_TIMER_X20_COMPAT_32BIT 6

pAR_TIMETAG_TYPE timeTag

 (output) Current device timer or translated
IRIG sample value. The timeTag.timeTag
structure member will be defined as follows
based on the supplied format parameter
value:

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GET_TIME

CEI-x30 User's Manual 167

AR_TIMETAG_EXT_IRIG_64BIT - 64-bit IRIG sample time in
microseconds since beginning of current year. The returned
timeTag.R.referenceTimeTag structure member will contain
the board internal timer-referenced time-stamp assigned when
the last bit of the IRIG sample was processed by the CEI-x30
IRIG receiver.

AR_TIMETAG_INT_USEC_64BIT - 64-bit internal board timer
in microseconds.

AR_TIMETAG_HOST_USEC_64BIT - 64-bit host operating
system time scaled to have a 1 microsecond resolution.

AR_TIMETAG_INT_20USEC_32BIT - 32-bit internal board
timer in microseconds.

AR_TIMETAG_INT_MSEC_32BIT - 32-bit internal board timer
scaled to have a 20 microsecond resolution.

AR_TIMER_X20_COMPAT_32BIT - 32-bit internal board timer
scaled to have a 1 millisecond resolution.

AR_GET_TIMERCNTL Program Interface Library

168 CEI-x30 User's Manual

AR_GET_TIMERCNTL
CEI_UINT32 ar_get_timercntl (CEI_INT16 board)

This routine is provided for legacy support of the CEI-x20 ARINC API,
returning the current 32-bit, 1 millisecond resolution time reference value
based on the current application-specified timer mode, (specified through
AR_SET_CONFIG using the attribute ARU_RX_TIMETAG_MODE). If
the current timer mode is assigned to any 64-bit timer, the least-significant
32-bits of the internal device timer will be returned (this applies to IRIG,
host, or internal timer). If the current timer mode is assigned to either of
the 32-bit CEI-x20 API compatibility or 20 microsecond (IP-AVIONICS)
resolution modes, the respective 32-bit adjusted timer value will be
returned.

The 32-bit timer value.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

Syntax

Description

Return Value
Arguments

Program Interface Library AR_GETWORD

CEI-x30 User's Manual 169

AR_GETWORD
CEI_INT16 ar_getword (CEI_INT16 board, CEI_INT16 channel,
pCEI_VOID destination)

This routine retrieves the next unread message from the specified receive
channel. If it successfully returns data message, there may or may not be
more messages in the buffer. It only means there was at least one message
in the buffer. Subsequent calls would be required to determine if more
messages are available in the buffer. If this routine returns a status value of
ARS_NODATA, the buffer is empty.

The channel value passed to this routine corresponds to the ARINC 429
receive channel index, starting with zero. If that value exceeds the 429
receive channel count and an ARINC 573/717 receiver exists, it is used as
the designated receive channel buffer.

ARS_GOTDATA A message has been retrieved.

ARS_NODATA No data available.

ARS_INVBOARD An uninitialized board or invalid board
value was provided .

ARS_INVARG A null data parameter value was provided.

ARS_INVHARVAL Channel is not available on device.

ARS_BAD_MESSAGE An invalid length ARINC 429 message was
received on the specified channel.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

CEI_INT16 board (input) Device this routine is to access.
Valid range is 0-15.

CEI_INT16 channel (input) Specifies which channel this routine
is to access. Valid range is 0 to one less than
the installed receive channel count.

pCEI_VOID destination (output) The address that is to receive the
message. The format of the 32-bit value is
dependent on the protocol assigned to the
respective receive channel. See Chapter 17,
“CEI-x30 Hardware Interface” for more
details on the receive buffer message
formats.

Syntax

Description

Return Value

Arguments

AR_GETWORDT Program Interface Library

170 CEI-x30 User's Manual

AR_GETWORDT
CEI_INT16 ar_getwordt (CEI_INT16 board, CEI_INT16 channel,
pCEI_VOID destination, pCEI_VOID timetag)

This routine retrieves the next unread message from the specified receive
channel. If it successfully returns data message, there may or may not be
more messages data in the buffer. It means only that there was at least one
message in the buffer. Subsequent calls are required to determine if more
messages are available in the buffer. If this routine returns a status value of
ARS_NODATA, the buffer is empty.

ARS_GOTDATA A message has been retrieved.

ARS_NODATA No data available.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_INVARG A null data parameter value was provided.

ARS_INVHARVAL Channel is not available on device.

ARS_BAD_MESSAGE An invalid length ARINC 429 message was
received on the specified channel.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

CEI_INT16 board (input) Device this routine is to access.
Valid range is 0-15.

CEI_INT16 channel (input) Specifies which channel this routine
is to access. Valid range is 0 to one less than
the installed receive channel count.

pCEI_VOID destination (output) The address that is to receive the
message. The format of the 32-bit value is
dependent on the protocol assigned to the
respective receive channel. See Chapter 17,
“CEI-x30 Hardware Interface” for more
details on the receive buffer message
formats.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GETWORDT

CEI-x30 User's Manual 171

pCEI_VOID timetag (output) The address that is to receive the
32-bit time-tag associated with the data,
(resolution is programmable). If the merged
receive mode is active for the specified
channel, the upper five bits of the 32-bit
time-tag word contain the receive channel
number on which the data was received.

AR_GETWORD_XT Program Interface Library

172 CEI-x30 User's Manual

AR_GETWORD_XT
CEI_INT16 ar_getword_xt (CEI_INT16 board, CEI_INT16 channel,
pCEI_VOID data, pAR_TIMETAG_TYPE timeTagRef)

This routine retrieves the next unread message and the associated time-tag
structure from the specified receive channel. If it successfully returns a
message, there may or may not be more messages in the buffer. It means
only that there was at least one message in the buffer. Subsequent calls are
required to determine if more messages are available in the buffer. If this
routine returns a status value of ARS_NODATA, the buffer is empty.

ARS_GOTDATA A message has been retrieved.

ARS_NODATA No data available.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_INVARG A null data parameter value was provided.

ARS_INVHARVAL Channel is not available on device.

ARS_BAD_MESSAGE An invalid length ARINC 429 message was
received on the specified channel.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

CEI_INT16 board (input) Device this routine is to access.
Valid range is 0-15.

CEI_INT16 channel (input) Specifies which channel this routine
is to access. Valid range is 0 to one less than
the installed receive channel count.

pCEI_VOID data (output) The address that is to receive the
32-bit message.

pAR_TIMETAG_TYPE timeTagRef (output)

 The address that is to receive the time-tag
data structure associated with the message.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_GO

CEI-x30 User's Manual 173

AR_GO
CEI_INT16 ar_go (CEI_INT16 board)

This routine assigns the global enable register Global Enable bit to be
enabled for the specified device. All message processing on the device is
activated when this routine executes.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

Syntax

Description

Return Value

Arguments

AR_HW_INTERRUPT_BUFFER_READ Program Interface Library

174 CEI-x30 User's Manual

AR_HW_INTERRUPT_BUFFER_READ
CEI_INT32 ar_hw_interrupt_buffer_read (CEI_INT16 board,
pCEI_UINT32 numberOfWords, pCEI_UINT32 data)

This routine provides read access to the local API copy of the CEI-x30
device interrupt queue. The local API copy is filled by hardware interrupt
processing within the default API ISR. If the host application replaces the
default API ISR with a custom ISR, this routine is not usable.

Each time this routine is invoked, the specified number of queue entries is
read from the buffer region starting at the location last referenced by the
API in a previous invocation and ending at the location written by the most
recent execution of the default API interrupt service routine.

ARS_GOTDATA Routine execution was successful and one or
more interrupt buffer entries were returned.

ARS_NODATA No unread interrupt buffer entries were
available or returned.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_INVARG A NULL data buffer pointer was supplied.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

pCEI_UINT32 numberOfWords (input/output) As an input, this argument
specified the number of interrupt buffer
entries to read and return. As an output, this
argument indicates the number of interrupt
buffer entries actually read, if there were
fewer unread entries available than what was
requested.

pCEI_UINT32 data (output) The location to store the interrupt
buffer entries read.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_INTERRUPT_QUEUE_READ

CEI-x30 User's Manual 175

AR_INTERRUPT_QUEUE_READ
CEI_INT32 ar_interrupt_queue_read (CEI_INT16 board, pCEI_UINT32
numberOfWords, pCEI_UINT32 data)

This routine provides read access directly to the CEI-x30 device hardware
interrupt queue. Each time this routine is invoked, the specified number of
queue entries will be read from the interrupt queue starting at the location
referenced by last invocation of this routine, and ending at the location
indicated by the device interrupt queue pointer.

ARS_GOTDATA Routine execution was successful and one or
more interrupt queue entries were returned.

ARS_NODATA No unread interrupt queue entries were
available or returned.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_INVARG A NULL data buffer pointer was supplied.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

pCEI_UINT32 numberOfWords (input/output) As an input, this argument
specified the number of interrupt buffer
entries to read and return. As an output, this
argument indicates the number of interrupt
buffer entries actually read, if there were
fewer unread entries available in the
interrupt queue than what was requested.

pCEI_UINT32 data (output) The location to store the interrupt
queue entries read.

Syntax

Description

Return Value

Arguments

AR_INITIALIZE_API Program Interface Library

176 CEI-x30 User's Manual

AR_INITIALIZE_API
CEI_INT16 ar_initialize_api (CEI_INT16 board)

This routine acquires the resources for the device and initializes API local
variables. With the exception of the RAR-PCIE, it also downloads the
CEI-x30 firmware program, resetting the device to an initial power-up
state.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_WINRTFAIL The device driver failed to open a session
with the device, either because the device is
not properly installed in the host system or a
resource conflict is inhibiting device driver
initialization.

ARS_BADLOAD The device driver session was opened
successfully but the device firmware
download failed.

ARS_HW_DETECT The device driver session was opened but
the detected device is not recognized as a
CEI-x30 product.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_INITIALIZE_DEVICE

CEI-x30 User's Manual 177

AR_INITIALIZE_DEVICE
CEI_INT16 ar_initialize_device (CEI_INT16 board)

This routine performs a non-destructive SRAM memory test, flushes the
receiver FIFO buffers, and assigns the default state of all channel
configuration registers. It also initializes the label filtering and message
scheduling features. The default state of the CEI-x30 board is defined as
follows:

 ARINC 429 Transmitter FIFOs enabled, speed set for 100Kbps and
ODD parity enabled.

 ARINC 429 Receiver FIFOs enabled, speed set for 100Kbps, ODD
parity, Merged Mode disabled, and Internal Wrap disabled.

 ARINC 717 Transmitter and Receiver FIFOs disabled, set for BPRZ
encoding at 768BPS (64-word subframe), auto-detect enabled, and
Internal Wrap disabled.

 Message Scheduler enabled, no messages defined.

 All receive label filtering disabled

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_MEMWRERR Device SRAM test write/read/verify failure.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

Syntax

Description

Return Value

Arguments

AR_HW_INTERRUPT_BUFFER_READ Program Interface Library

178 CEI-x30 User's Manual

AR_HW_INTERRUPT_BUFFER_READ
CEI_INT32 ar_hw_interrupt_buffer_read (CEI_INT16 board,
pCEI_UINT32 numberOfWords, pCEI_UINT32 data)

This routine provides read access to the local API copy of the CEI-x30
device interrupt queue. The local API copy of the current device interrupt
queue is maintained by hardware interrupt processing within the default
API interrupt service routine (ISR). If the host application replaces the
default API ISR with a custom ISR, this routine is not usable.

Each time this routine is invoked, the specified number of queue entries
will be read from the buffer region starting at the location last referenced
by the API and ending at the location referenced by the interrupt queue
pointer. If fewer than the requested number of entries are found, only
those entries available will be returned.

ARS_GOTDATA At least one interrupt queue entry has been
retrieved.

ARS_NODATA No unread interrupt queue entires are
available.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_INVARG Invalid or null data buffer parameter.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

pCEI_UINT32 numberOfWords (input/output) As an input this parameter
specifies the number of interrupt queue
entries to read; as an output this parameter
indicates how many interrupt queue entries
were actually copied to the data array.

pCEI_UINT32 data (output) An array referencing the location to
store the requested 32-bit interrupt queue
entry/entries. Valid Interrupt Queue entry
values range from 64 to 95, and 255. The
value 64 indicates receive channel 0 label
filter triggered, where 95 indicates receive
channel 31 label filter triggered, and 255 is
reserved for host-triggered interrupt.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_INTERRUPT_QUEUE_READ

CEI-x30 User's Manual 179

AR_INTERRUPT_QUEUE_READ
CEI_INT32 ar_interrupt_queue_read (CEI_INT16 board, pCEI_UINT32
numberOfWords, pCEI_UINT32 data)

This routine provides read access directly to the CEI-x30 device interrupt
queue. Each time this routine is invoked, the specified number of queue
entries will be read from the buffer region starting at the location last
referenced by the host/API from this routine. If fewer than the requested
number of entries are found, only those entries available are returned.

ARS_GOTDATA At least one interrupt queue entry has been
retrieved.

ARS_NODATA No unread interrupt queue entires are
available.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_INVARG Invalid or null data buffer parameter.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

pCEI_UINT32 numberOfWords (input/output) As an input this parameter
specifies the number of interrupt queue
entries to read; as an output this parameter
indicates how many interrupt queue entries
were actually copied to the data array.

pCEI_UINT32 data (output) An array referencing the location to
store the requested 32-bit interrupt queue
entry/entries. Valid Interrupt Queue entry
values range from 64 to 95, and 255. The
value 64 indicates receive channel 0 label
filter triggered, where 95 indicates receive
channel 31 label filter triggered, and 255 is
reserved for host-triggered interrupt.

Syntax

Description

Return Value

Arguments

AR_LABEL_FILTER Program Interface Library

180 CEI-x30 User's Manual

AR_LABEL_FILTER
CEI_INT16 ar_label_filter (CEI_INT16 board, CEI_INT16 channel,
CEI_UINT16 label, CEI_INT16 action)

CEI-x30 devices support the ability to filter ARINC 429 messages by the
8-bit label value. Once filtering has been enabled for a specified
channel/label combination, data received with that label value would be
discarded until label filtering for the specified label has been disabled.
Label filtering is disabled for all labels by default. Label filtering changes
are effective immediately on completion of this routine.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_INVARG An invalid label or action value was
provided.

ARS_INHARVAL The specified channel does not support label
filtering.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

CEI_INT16 channel (input) channel label filter table this routine
is to access. The valid range is 0 to one less
than the installed receive channel count.

CEI_UINT16 label (input) The label of interest. Valid range is
0-255. Also valid is ARU_ALL_LABELS
(511), which invokes the action for all labels
on the specified channel.

CEI_INT16 action (input) Enable or disable filtering for this
combination of board/channel/label. Valid
values are:

ARU_FILTER_ON (1) enable filtering
ARU_FILTER_OFF (0) disable filtering
(default state is to not filter any labels).

Syntax

Description

Return Value

Arguments

Program Interface Library AR_LOADSLV

CEI-x30 User's Manual 181

AR_LOADSLV
CEI_INT16 ar_loadslv (CEI_INT16 board, CEI_UINT32 base_seg,
CEI_INT32 base_port, CEI_UINT16 ram_size)

This routine opens a session and acquires the memory resources allocated
to the device, downloads the firmware to the FPGA, and invokes an
initialization/reset procedure. Following API and device initialization,
optional invocation of AR_BOARD_TEST may provide verification of
internal message wrap operation, (execution controlled via invocation of
AR_BYPASS_WRAP_TEST).

See the routine descriptions under AP_INITIALIZE_API and
AR_INITIALIZE_DEVICE for details regarding the default setup of the
API and the device following execution of this routine.

If any portion of the initialization fails or the board is not detected, a status
other than ARS_NORMAL is returned.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_WINRTFAIL The device driver failed to open a session
with the device, either because the device is
not properly installed in the host system or a
resource conflict is inhibiting device driver
initialization.

ARS_BADLOAD The device driver session was opened
successfully but the device firmware
download failed.

ARS_HW_DETECT The device driver session was opened but
the detected device is not recognized as a
CEI-x30 product.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_WRAP_DROP_FAIL ARINC 429 wrap test data missing.

ARS_WRAP_DATA_FAIL ARINC 429 wrap test data pattern mismatch.

ARS_WRAP_FLUSH_FAIL Unknown external messages were received
during the internal wrap test execution.

ARS_MEMWRERR Device SRAM test write/read/verify failure.

Syntax

Description

Return Value

AR_LOADSLV Program Interface Library

182 CEI-x30 User's Manual

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

CEI_UINT32 base_seg (input) This parameter is ignored, (supplied
for ARINC API compatibility only).

CEI_INT32 base_port (input) This parameter is ignored, (supplied
for ARINC API compatibility only).

CEI_UINT16 ram_size (input) This parameter is ignored, (supplied
for ARINC API compatibility only).

Arguments

Program Interface Library AR_MODIFY_MSG

CEI-x30 User's Manual 183

AR_MODIFY_MSG
CEI_INT16 ar_modify_msg (CEI_INT16 board, CEI_INT16 channel,
CEI_INT16 msgNumber, CEI_INT16 rate, CEI_INT32 data)

This routine modifies an existing 32-bit ARINC message for periodic
retransmission, originally created through use of the AR_DEFINE_MSG
or AR_DEFINE_MSG_BLOCK API routines.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_INVARG An invalid channel value was provided.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVHARVAL Message scheduling is not supported on the
specified channel.

ARS_FAILURE The supplied message table index exceeds
the available number of table entries.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

CEI_INT16 channel (input) Channel message scheduler table this
routine is to access. The valid range is 0 to
one less than the number of installed
transmit channels.

CEI_INT16 msgNumber (input) The unique message scheduler table
entry index assigned to this message, as
returned for the respective message from the
routine AR_DEFINE_MSG or
AR_DEFINE_MSG_BLOCK.

CEI_INT16 rate (input) Periodic transmission rate, defined in
milliseconds. A rate value of zero will
disable message transmission for this
message scheduler table entry and make this
entry available for reuse on the next
invocation of AR_DEFINE_MSG or
AR_DEFINE_MSG_BLOCK.

CEI_INT32 data (input) The updated 32-bit ARINC message
to transmit.

Syntax

Description

Return Value

Arguments

AR_MODIFY_MSG_BLOCK Program Interface Library

184 CEI-x30 User's Manual

AR_MODIFY_MSG_BLOCK
CEI_INT16 ar_modify_msg_block (CEI_INT32 numberOfEntries,
pAR_SCHEDULED_MSG_ENTRY_TYPE messageEntry)

This routine provides a method to modify the channel assignment or rate
and data values on a series of 32-bit ARINC messages previously defined
for periodic retransmission via AR_DEFINE_MSG_BLOCK.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_INVARG An invalid channel structure member value
was provided.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVHARVAL Message scheduling is not supported on the
specified channel.

ARS_FAILURE A supplied message table index exceeds the
available number of table entries.

CEI_INT32 numberOfEntries (input) The number of entries to modify
using the subsequent structure pointer
parameter, messageEntry.

pAR_SCHEDULED_MSG_ENTRY_TYPE messageEntry (input)

 array of structures of message definition content, defined as follows:

unsigned long messageIndex The unique message scheduler table entry
index assigned to this message. This
messageIndex structure member will have
been defined in a previous invocation of
AR_DEFINE_MSG_BLOCK.

unsigned long board Device to access. Valid range is 0-15.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_MODIFY_MSG_BLOCK

CEI-x30 User's Manual 185

unsigned long channel Which channel portion of the message
scheduler table this routine is to access. The
valid range is 0 to one less than the number
of installed transmit channels.

unsigned long rate Periodic transmission rate, in milliseconds.
A rate value of zero will disable message
transmission.

unsigned long start Not supported during message modification.

unsigned long txCount Not supported during message modification.

unsigned long data The 32-bit ARINC message to transmit.

AR_NUM_RCHANS Program Interface Library

186 CEI-x30 User's Manual

AR_NUM_RCHANS
CEI_INT16 ar_num_rchans (CEI_INT16 board)

This routine retrieves the number of receive channels installed on the
specified device.

Any value less than 40 number of installed receive channels.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_NUM_XCHANS

CEI-x30 User's Manual 187

AR_NUM_XCHANS
CEI_INT16 ar_num_xchans (CEI_INT16 board)

This routine retrieves the number of transmit channels installed on the
specified device.

Any value less than 40 number of installed transmit channels.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

Syntax

Description

Return Value

Arguments

AR_PUT_429_MESSAGE Program Interface Library

188 CEI-x30 User's Manual

AR_PUT_429_MESSAGE
CEI_INT16 ar_put_429_message (CEI_INT16 board, CEI_INT16
channel, CEI_INT32 data)

This routine places the provided ARINC 429 message data in the specified
channel transmit buffer. If the specified transmit buffer is full, an overflow
status is returned.

Since ARINC 429 transmit data rates are relatively slow, almost any host
can generate transmit data at a much faster rate than data is transmitted.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_INHARVAL The specified channel is invalid or does not
support the ARINC 429 protocol.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_XMITOVRFLO A transmit buffer overrun occurred.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

CEI_INT16 channel (input) ARINC 429 transmit channel this
routine is to access. The valid range is 0 to
one less than the number of installed
transmit channels.

CEI_INT32 data (input) ARINC 429 message to transmit in
standard ARINC 429 format.

Syntax

Description

Note:

Return Value

Arguments

Program Interface Library AR_PUT_573_FRAME

CEI-x30 User's Manual 189

AR_PUT_573_FRAME
CEI_INT16 ar_put_573_frame (CEI_INT16 board, CEI_UINT32
numberWords, pCEI_UINT32 transmitCount, pCEI_INT16 arincData)

This routine attempts to transfer numberWords of ARINC 573/717 data
from the arincData source to the device ARINC 573/717 transmit buffer.
The amount of data transferred to the transmitter is based on what is
available in the buffer, with the actual number of words transferred
indicated in the return value of transmitCount.

Since ARINC 573/717 transmit data rates are relatively slow, almost any
host can generate transmit frame data at a much faster rate than frame
data is actually transmitted.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_INHARVAL The specified board does not support the
ARINC 573/717 protocol.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

CEI_UINT32 numberWords (input) Number of words to copy from the
source 573 frame to the transmit buffer.

pCEI_UINT32 transmitCount (output) Indicates how many words were
copied from the source 573 frame to the
transmit buffer, either less than or equal to
the value of numberWords.

pCEI_INT16 arincData (output) Pointer to the array of ARINC
573/717 frame data. The format of each data
word in the source ARINC 573/717 frame is
defined as follows:

15 – 12 11 - 0
RESERVED data

data: the 12-bit ARINC 573/717 data.

Syntax

Description

Note:

Return Value

Arguments

AR_PUTBLOCK Program Interface Library

190 CEI-x30 User's Manual

AR_PUTBLOCK
CEI_INT32 ar_putblock (CEI_UINT32 board, CEI_UINT32 channel,
CEI_INT32 maxMessages, CEI_INT32 offset, pCEI_INT32 data,
pCEI_INT32 actualCount)

This routine transfers the array of ARINC 429 messages to the specified
transmit channel buffer. When this routine returns, the data has not been
transmitted, it has only been placed in the transmit buffer. If other data is
in the transmit buffer ahead of it, this data is transmitted in turn.

Since ARINC 429 transmit data rates are relatively slow, almost any host
can generate transmit data at a much faster rate than data is transmitted.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_INHARVAL The specified channel is invalid or does not
support the ARINC 429 protocol.

ARS_INVARG An invalid or null maxMessages, data, or
actualCount parameter was provided.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_XMITOVRFLO A transmit buffer overrun occurred.

CEI_UINT32 board (input) Device to access. Valid range is 0-
15.

CEI_UINT32 channel (input) ARINC 429 transmit channel this
routine is to access. The valid range is 0 to
one less than the number of installed
transmit channels.

CEI_INT32 maxMessages (input) The number of messages to transmit.

CEI_INT32 offset Unused legacy API parameter .

pCEI_INT32 data (input) Array supplying 32-bit ARINC data
values.

pCEI_INT32 actualCount (output) The number of messages copied to
the transmit buffer.

Syntax

Description

Note:

Return Value

Arguments

Program Interface Library AR_PUTBLOCK_MULTI_CHAN

CEI-x30 User's Manual 191

AR_PUTBLOCK_MULTI_CHAN
CEI_INT32 ar_putblock_multi_chan (CEI_UINT32 board, CEI_INT32
maxMessages, pCEI_UINT32 channels, pCEI_INT32 data, pCEI_INT32
actualCount)

This routine transfers messages from the data array source to the channel
transmit buffer corresponding to the respective transmit channel element of
the channels array. When this routine returns, the data has not necessarily
been transmitted, it has only been placed in the respective transmit
buffer(s). If other data is in the transmit buffer ahead of it, this data will be
transmitted in turn.

Since ARINC 429 transmit data rates are relatively slow, almost any host
can generate transmit data at a much faster rate than data is transmitted.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_INHARVAL One of the specified channel array elements
is invalid or does not support the ARINC
429 protocol.

ARS_INVARG An invalid or null maxMessages, data, or
NULL actualCount parameter was provided.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_XMITOVRFLO A transmit buffer overrun occurred.

CEI_UINT32 board (input) Device to access. Valid range is 0-
15.

CEI_INT32 maxMessages (input) The number of messages to transmit.

pCEI_UINT32 channels (input) Array supplying the ARINC 429
transmit channel on which this routine is to
transmit the respective ARINC 429 data.
The transmit channel index in each element
of this array corresponds directly to the
ARINC 429 message defined in the
respective element of the data array. The
valid range for each element of this array is 0
to one less than the number of installed
transmit channels.

Syntax

Description

Note:

Return Value

Arguments

AR_PUTBLOCK_MULTI_CHAN Program Interface Library

192 CEI-x30 User's Manual

pCEI_INT32 data (input) Array supplying 32-bit ARINC data
values.

pCEI_INT32 actualCount (input) The number of messages transmitted.

Program Interface Library AR_PUTFILTER

CEI-x30 User's Manual 193

AR_PUTFILTER
CEI_INT32 ar_putfilter (CEI_UINT32 board, CEI_UINT32 channel,
pCEI_CHAR filterTable)

This routine assigns an entire channel portion of the label filter table for the
specified receive channel. Each receive channel has a separate area in the
device label filter table, which is used by the firmware to control storage of
received labels. Each element of the filter table consists of a three bit field
defined for compatibility with the CEI-x20 product line as follows:
FILTER_SEQUENTIAL 0x10 If CLEAR add label to circular receive buffer
FILTER_SNAPSHOT 0x20 If CLEAR add label to snapshot receiver buffer
FILTER_INTERRUPT 0x40 If SET on reception insert the respective receive

channel tag (ranging from 64-95) in the interrupt queue and if
enabled generate a PCI interrupt.

The filter buffer for a single channel is defined as follows:

filterTable[MAX_ESSM][MAX_SDI][MAX_LABEL]

and accessed as follows in the array referenced by filterTable:

filterTable[eSSM][SDI][label]

where the bits of the ARINC word are split up as follows:

eSSM SDI label
30, 29, 28 9, 8 7, 6, 5, 4, 3, 2, 1, 0

For FILTER_INTERRUPT processing, an entry is made into the interrupt
queue if specified through receiver interaction with the label filter table
definition, even if hardware interrupts are not enabled.

To write individual label filter table elements, refer to the API routines
AR_ENH_LABEL_FILTER and AR_LABEL_FILTER.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_INVARG An invalid channel or filterTable value was
provided.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

CEI_UINT32 board (input) Device to access. Valid range is 0-
15.

Syntax

Description

Note:

Return Value

Arguments

AR_PUTFILTER Program Interface Library

194 CEI-x30 User's Manual

CEI_UINT32 channel (input) Specifies which receive channel this
routine is to access. Valid range is 0 to one
less than the installed receive channel count.

pCEI_CHAR filterTable (input) Array containing the contents of the
specified channel’s label filter table. This
array must have an allocation of 8Kbytes.

Program Interface Library AR_PUTWORD

CEI-x30 User's Manual 195

AR_PUTWORD
CEI_INT16 ar_putword (CEI_INT16 board, CEI_INT16 channel,
CEI_INT32 arincdata)

This routine places the provided message data in the specified channel
transmit buffer. When this routine returns, the data has not necessarily
been sent, it has only been placed in the transmit buffer. If other data is in
the transmit buffer ahead of it, this data will be transmitted in turn. If the
specified transmit buffer is full, an overflow status is returned.

The channel value passed to this routine corresponds to the ARINC 429
transmit channel index, starting with zero. If that value exceeds the 429
transmit channel count and an ARINC 573/717 transmitter exists, it is used
as the designated transmit channel buffer.

Since ARINC transmit data rates are relatively slow, almost any host can
generate transmit data at a much faster rate than data is transmitted.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_INHARVAL The specified channel is invalid or does not
support the ARINC 429 (or 717) protocol.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_XMITOVRFLO A transmit buffer overrun occurred.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

CEI_INT16 channel (input) Transmit channel this routine is to
access. The valid range is 0 to one less than
the installed transmit channel count.

CEI_INT32 arincdata (input) 32-bit ARINC 429 message to
transmit.

Syntax

Description

Note:

Return Value

Arguments

AR_QUERY_DEVICE Program Interface Library

196 CEI-x30 User's Manual

AR_QUERY_DEVICE
CEI_INT16 ar_query_device (CEI_INT16 board, pCEI_INT16
boardType)

This routine opens a session to the specified device, determines the
identification of that device, then closes the session with the device and
returns the identification to the calling application. This routine should not
be invoked with the same board parameter value used in a previous
invocation of AR_LOADSLV without first terminating the session with
that device via invocation of AR_CLOSE.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An invalid board value was provided.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

pCEI_INT16 boardType (output) Identification of the board detected,
with valid values defined as follows:

CEI-830 19
CEI-430 21
AMC-A30 22
CEI-530 26
R-830RX 27
RAR-CPCI 28
RAR-EC 29
RAR-PCIE 30
CEI-430A 31
CEI-520 6
CEI-620 10
CEI-820 11
CEI-715 16
P-708 20
PMC-D1 101
EPMC 103
P-SER 104
P-MIO 105
P-DIS 106
AMC-1553 108
(c)PCI-1553 109
QPCI-1553 110
QCP-1553 111
QPCX-1553 112

Syntax

Description

Return Value

Arguments

Program Interface Library AR_RESET

CEI-x30 User's Manual 197

AR_RESET
CEI_INT16 ar_reset (CEI_INT16 board)

This routine assigns the global enable register Global Enable bit to be
disabled and reinitializes the device to the same channel configuration as
that following an invocation of AR_LOADSLV. See the description for
the routine AR_INITIALIZE_DEVICE for more details.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_MEMWRERR Device SRAM test write/read/verify failure.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

Syntax

Description

Return Value

Arguments

AR_RESET_TIMERCNT Program Interface Library

198 CEI-x30 User's Manual

AR_RESET_TIMERCNT
CEI_VOID ar_reset_timercnt (CEI_INT16 board)

This routine is designed to provide compatibility with the CEI-x20 ARINC
API. It resets the CEI-x30 device internal one-microsecond timer to zero.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

Syntax

Description

Arguments

Program Interface Library AR_SET_CONFIG

CEI-x30 User's Manual 199

AR_SET_CONFIG
CEI_INT16 ar_set_config (CEI_INT16 board, CEI_INT16 item,
CEI_UINT32 value)

This routine provides a means to define general device configuration
attributes, as well as limited individual channel configuration attributes. It
is provided for backward compatibility to CEI-x20 based applications. The
routine AR_SET_DEVICE_CONFIG is the desired routine for defining
channel and board-level configuration items.

ARS_NORMAL Routine execution was successful.

ARS_INVARG The item argument value is not supported by
this API routine.

ARS_INVHARVAL The item argument value is not supported by
this device configuration.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed .

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

CEI_INT16 item (input) Attribute about which to set
information:

ARU_XMIT_RATE transmit rate for all transmitters.
ARU_RECV_RATE receive rate for all receivers.
ARU_PARITY parity for all transmitters and

receivers.
ARU_INTERNAL_WRAP enables internal wrap mode for all

receivers.
ARU_RX_CH01_BIT_RATE –
ARU_RX_CH32_BIT_RATE receiver 1 - 32 bit rate.

ARU_TX_CH01_BIT_RATE –
ARU_TX_CH32_BIT_RATE transmitter 1 - 32 bit rate.

ARU_RX_CH01_PARITY –
ARU_RX_CH32_PARITY receiver 1 - 32 parity.

ARU_TX_CH01_PARITY –
ARU_TX_CH32_PARITY transmitter 1 - 32 parity.

Syntax

Description

Return Value

Arguments

AR_SET_CONFIG Program Interface Library

200 CEI-x30 User's Manual

ARU_TX_CH01_SHUT_OFF –
ARU_TX_CH32_SHUT_OFF transmitter 1 - 32 disable.

ARU_TX_CH01_LB_INJ – transmitter 1 - 32 low bit
ARU_TX_CH32_LB_INJ error enable.

ARU_TX_CH01_HB_INJ – transmitter 1 - 32 high bit
ARU_TX_CH32_HB_INJ error enable.

ARU_TX_CH01_GAP_INJ – transmitter 1 - 32
ARU_TX_CH32_GAP_INJ message gap error enable.

ARU_RX_TIMETAG_MODE the timer/time-tag source and

resolution

ARU_ACCESS_SNAPSHOT_BUFFER snapshot storage mode

ARU_IRIG_WRAP_ENABLE enables IRIG receiver internal wrap

ARU_IRIG_INPUT_THRESHOLD sets the IRIG DAC threshold

ARU_IRIG_ADJUST_THRESHOLD invokes a more precise IRIG

DAC auto-adjustment procedure

ARU_IRIG_QUICK_ADJUSTMENT invokes a quick IRIG DAC

auto-adjustment procedure

ARU_IRIG_SET_BIAS assigns an offset to the board IRIG

time value

CEI_UINT32 value (input) the value to set the item.

If the specified item is ARU_XMIT_RATE (1) or ARU_RECV_RATE
(2), valid value parameter selections are:

AR_HIGH (0) high rate (100Kbs)
AR_LOW (1) low rate (12.5Kbs)
Any other value specifies a frequency value in Hertz.

If the specified item is ARU_RX_CHnn_BIT_RATE (500-531), where nn
is the receiver channel (01 - 32), valid value parameter selections are:

AR_HIGH (0) high rate (100Kbs)
AR_LOW (1) low rate (12.5Kbs)
Any other value specifies a frequency value in Hertz.

If the specified item is ARU_TX_CHnn_BIT_RATE (700-731), where nn
is the transmitter channel (01 - 32), valid value parameter selections are:

AR_HIGH (0) high rate (100Kbs)
AR_LOW (1) low rate (12.5Kbs)

Program Interface Library AR_SET_CONFIG

CEI-x30 User's Manual 201

Any other value specifies a frequency value in Hertz.

Any specified transmit bus frequency below 15KHz will be assigned to a
slow slew rate. Any specified transmit bus frequency above 15KHz will
be assigned to a fast slew rate.

If the specified item is ARU_PARITY (3), the value parameter specifies
the parity selection for all transmit and receive channels.

AR_ODD (0) odd transmit parity and receive parity detect enabled
AR_EVEN (1) even transmit parity and rx parity detect enabled
AR_OFF (8) transmit parity and receive parity detect disabled
AR_RAW (0x2000) transmit parity and rx parity detect disabled

If the specified item is ARU_RX_CHnn_PARITY (900-931), where nn is
the receiver channel (01 - 32), valid value parameter selections are:

AR_ODD (0) receiver parity detection enabled
AR_OFF (8) receiver parity detection disabled
AR_RAW (0x2000) receiver parity detection disabled

If the specified item is ARU_TX_CHnn_PARITY (1100-1131), where nn
is the transmitter channel (01 - 32), valid value parameter selections are:

AR_ODD (0) odd transmitter parity
AR_EVEN (1) even transmitter parity
AR_OFF (8) transmitter parity disabled
AR_RAW (0x2000) transmitter parity disabled

If the requested item is ARU_TX_CHnn_SHUT_OFF (1700-1731), where
nn is the transmitter channel (01 - 32), valid value parameter selections are:

AR_ON (7) external transmission is disabled
AR_OFF (8) external transmission is enabled

For the RAR-PCIE board, disabling external transmission also causes the
transmit pins to switch to a tri-state condition; for all other boards the
transmit pins will switch to a null condition.

If the requested item is ARU_TX_CHnn_HB_INJ (3300-3331), where nn
is the transmitter channel (01 - 32), valid value parameter selections are:

AR_ON (7) 33-bit transmission is enabled
AR_OFF (8) standard 32-bit transmission is enabled

If the requested item is ARU_TX_CHnn_LB_INJ (3500-3531), where nn
is the transmitter channel (01 - 32), valid value parameter selections are:

AR_ON (7) 31-bit transmission is enabled
AR_OFF (8) standard 32-bit transmission is enabled

If the requested item is ARU_TX_CHnn_GAP_INJ (3700-3731), where nn
is the transmitter channel (01 - 32), valid value parameter selections are:

AR_ON (7) 3-bit message gap is used
AR_OFF (8) standard 4-bit message gap is used

Note

AR_SET_CONFIG Program Interface Library

202 CEI-x30 User's Manual

If the specified item is ARU_INTERNAL_WRAP (4), valid value
parameter selections are:

AR_WRAP_ON (0) internal wrap enabled
AR_WRAP_OFF (1) internal wrap disabled

If the specified item is ARU_RX_TIMETAG_MODE (440), valid value
parameter selections represent the timer/time-tag source and resolution.
This item specifies the resolution of any timer-read or receive data time-tag
value obtained via the API, with value selections defined as follows:

AR_TIMETAG_EXT_IRIG_64BIT (0)
AR_TIMETAG_INT_USEC_64BIT (1)
AR_TIMETAG_INT_20USEC_32BIT (3)
AR_TIMETAG_INT_MSEC_32BIT (4)

A value of AR_TIMETAG_EXT_IRIG_64BIT selects the source as
the external IRIG receiver, if connected; otherwise, if the IRIG signal
is not internally wrapped this selection would be invalid. All other
values represent various timer/time-tag LSB resolution values based
on the internal CEI-x30 device timer.

If the specified item is ARU_ACCESS_SNAPSHOT_BUFFER (38), a
valid value parameter for selecting the active Snapshot Buffer storage
mode is:

ARU_LABEL_ONLY (0) messages stored based on label
ARU_LABEL_WITH_SDI (1) messages stored based on the
combined label and SDI field values

If the specified item is ARU_IRIG_WRAP_ENABLE (441), valid value
parameter selections are:

AR_ON (7) IRIG receiver internal wrap enabled
AR_OFF (8) IRIG receiver internal wrap disabled

If the specified item is ARU_IRIG_INPUT_THRESHOLD (442), the
value parameter specifies the IRIG receiver threshold voltage in millivolts.

The item ARU_IRIG_ADJUST_THRESHOLD (443) invokes the IRIG
DAC auto-adjustment procedure. This procedure will determine the low
and high threshold values at which the incoming IRIG signal is present. It
then determines the best threshold level for the IRIG DAC, and returns the
value to the application in place of a returned status (failures are indicated
via return value of ARS_FAILURE). This procedure may execute for up
to, and in some cases in excess of, one minute before finding the best-case
threshold value for the incoming IRIG signal. If a printed status of the
execution progress within this procedure is desired, assign the value
parameter to any non-zero value.

Program Interface Library AR_SET_CONFIG

CEI-x30 User's Manual 203

If the specified item is ARU_IRIG_QUICK_ADJUSTMENT (444), the
API will perform a quick adjustment of the IRIG DAC for an external
input IRIG signal using signal edge detection for verification of signal
presence. This execution of this adjustment should require less than one
second.

If the specified item is ARU_IRIG_SET_BIAS (446), a valid value
parameter consists of an offset to the board-supplied IRIG time specified in
milliseconds. The bias time range is +/-32.768 seconds.

AR_SET_DEVICE_CONFIG Program Interface Library

204 CEI-x30 User's Manual

AR_SET_DEVICE_CONFIG
CEI_INT16 ar_set_device_config (CEI_INT16 board, CEI_INT16
channel, CEI_INT16 item, CEI_INT16 value)

This is the recommended routine to define the general device and ARINC
429 channel configuration attributes.

ARS_NORMAL Routine execution was successful.

ARS_INVARG The item argument value is not supported by
this API routine.

ARS_INVHARVAL The item argument value is not supported by
this device configuration.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

CEI_INT16 channel (input) Specifies which channel this routine
is to access. Valid range is 0 to one less than
the installed channel count for the respective
channel type.

CEI_INT16 item (input) Specifies the configuration attribute
to define:

ARU_RX_BITRATE receive rate for specified channel.
ARU_TX_BITRATE transmit rate for specified channel.
ARU_RX_PARITY receive parity for specified channel.
ARU_TX_PARITY transmit parity for specified channel.
ARU_RX_FIFO_ENABLE receive channel FIFO enable.
ARU_TX_FIFO_ENABLE transmit channel FIFO enable.
ARU_TX_DISABLE transmit channel transceiver disable.
ARU_TX_GAP_ERROR transmit message gap error enable.
ARU_TX_BIT_ERROR transmit message size error enable.
ARU_FAST_SLEW_RATE transmit channel slew rate select.
ARU_RECV_MODE receive channel internal wrap mode.
ARU_RX_MERGED_MODE receive channel merge mode enable.
ARU_ACCESS_SNAPSHOT_BUFFER snapshot storage mode
ARU_BYPASS_INIT_WRAP_TEST bypass initialization wrap test
ARU_MULTITHREAD_PROTECT control use of thread protection
ARU_RX_TIMETAG_MODE timer/time-tag source and resolution
ARU_DIFFERENTIAL_OUT differential output enable and state

Syntax

Description

Return Value

Arguments

Program Interface Library AR_SET_DEVICE_CONFIG

CEI-x30 User's Manual 205

ARU_DISCRETE_OUT sets a discrete output state
ARU_IRIG_WRAP_ENABLE enables IRIG receiver internal wrap
ARU_IRIG_INPUT_THRESHOLD sets the IRIG DAC threshold
ARU_IRIG_ADJUST_THRESHOLD both invoke IRIG DAC
ARU_IRIG_QUICK_ADJUSTMENT auto-adjustment procedures
ARU_IRIG_SET_BIAS assigns an offset to IRIG time
ARU_IRIG_OUTPUT_ENABLE R830RX IRIG Tx state
ARU_HW_ENHANCE_UPDATE update board for enhanced f/w
ARU_HW_INTERRUPT_ENABLE enable/disable PCI interrupts
ARU_INSERT_INT_Q_ENTRY insert entry in interrupt queue

CEI_INT16 value (input) the value to set the specified item.

If the requested item is ARU_RX_BITRATE (1) or ARU_TX_BITRATE
(2), valid value parameter selections are:

ARU_SPEED_HIGH (0) high rate (100Kbs)
ARU_SPEED_LOW (1) low rate (12.5Kbs)

Any other value assigns a non-standard bus speed, and is translated
as a divisor for the 16MHz device clock reference. This value and
the respective baud rate may be interpreted using the following
formulas:

 Baud Rate = 16,000,000 / (Value+2)

 Value = (16,000,000 / Desired Baud Rate) - 2

Any non-standard transmit bus speed value resulting in a baud rate
below 15KHz will be assigned to a slow slew rate. Any non-standard
transmit bus speed value resulting in a baud rate at or above 15KHz will
be assigned to a fast slew rate.

If the requested item is ARU_RX_PARITY (3), valid value parameter
selections are:

AR_ON (7) receiver parity enabled
AR_OFF (8) receiver parity disabled

If the requested item is ARU_TX_PARITY (4), valid value parameter
selections are:

ARU_PARITY_ODD (0) odd transmitter parity
ARU_PARITY_EVEN (1) even transmitter parity
ARU_PARITY_NONE (2) transmitter parity disabled

If the requested item is ARU_RECV_MODE (5), valid value parameter
selections are:

AR_WRAP_ON (0) internal wrap enabled
AR_WRAP_OFF (1) internal wrap disabled

Note

AR_SET_DEVICE_CONFIG Program Interface Library

206 CEI-x30 User's Manual

If the requested item is ARU_RX_FIFO_ENABLE (16) or
ARU_TX_FIFO_ENABLE (17), valid value parameter selections are:

AR_ON (7) Rx/Tx FIFO operation enabled
AR_OFF (8) Rx/Tx FIFO operation disabled

If the requested item is ARU_TX_DISABLE (10), valid value parameter
selections are:

AR_ON (7) external transmission disabled
AR_OFF (8) external transmission enabled

For the RAR-PCIE board, disabling external transmission also causes the
transmit pins to switch to a tri-state condition; for all other boards the
transmit pins will switch to a null condition.

If the requested item is ARU_TX_GAP_ERROR (8), valid value
parameter selections are:

AR_ON (7) transmit message gap error enabled
AR_OFF (8) transmit message gap error disabled

If the requested item is ARU_TX_BIT_ERROR (6), valid value parameter
selections are:

AR_LO (0) Low Bit Error operation is enabled
AR_HI (1) High Bit Error operation is enabled
AR_OFF (8) bit errors are disabled on this transmitter

If the requested item is ARU_FAST_SLEW_RATE (323), valid value
parameter selections are:

AR_ON (7) Fast Slew Rate selected (1.5 µsec rise time)
AR_OFF (8) Slow Slew Rate selected (10 µsec rise time)

If the requested item is ARU_RX_MERGED_MODE (18), valid value
parameter selections are:

AR_ON (7) receiver merged mode operation enabled
AR_OFF (8) receiver merged mode operation disabled

If the requested item is ARU_ACCESS_SNAPSHOT_BUFFER (38),
valid value parameter selections are:

ARU_LABEL_ONLY (0) message storage on a label basis
ARU_LABEL_WITH_SDI (1) message storage on a label/sdi basis

If the specified item is ARU_BYPASS_INIT_WRAP_TEST (320), valid
value parameter selections are:

AR_ON (7) bypass internal wrap test invocation during init
AR_OFF (8) execute internal wrap test invocation during init

If the specified item is ARU_MULTITHREAD_PROTECT (321), valid
value parameter selections are:

AR_ON (7) enables mutex/semaphore thread protection
AR_OFF (8) disables mutex/semaphore thread protection

Program Interface Library AR_SET_DEVICE_CONFIG

CEI-x30 User's Manual 207

If the specified item is ARU_RX_TIMETAG_MODE (440), valid value
parameter selections represent the timer/time-tag source and resolution.
This item specifies the resolution of any timer-read or receive data time-tag
value obtained via the API, with value selections defined as follows:

AR_TIMETAG_EXT_IRIG_64BIT (0)
AR_TIMETAG_INT_USEC_64BIT (1)
AR_TIMETAG_INT_20USEC_32BIT (3)
AR_TIMETAG_INT_MSEC_32BIT (4)

A value of AR_TIMETAG_EXT_IRIG_64BIT selects the source as
the external IRIG receiver, if connected; otherwise, if the IRIG signal
is not internally wrapped this selection would be invalid. All other
values represent various timer/time-tag LSB resolution values based on
the internal CEI-x30 device timer.

If the specified item is ARU_DISCRETE_OUT (12), valid value parameter
selections are:

AR_HI (1) = the discrete is set High
AR_LO (0) = the discrete is set Low

If the specified item is ARU_ DIFFERENTIAL _OUT (23), valid value
parameter selections assign both the enable state and output state of the
differential channel:

AR_HI (1) the differential output is set high
AR_LO (0) the differential output is set low
AR_ON (7) the differential output is enabled
AR_OFF (8) the differential output is disabled

If the specified item is ARU_IRIG_WRAP_ENABLE (441), valid value
parameter selections are:

AR_WRAP_ON (0) IRIG receiver internal wrap enabled
AR_WRAP_OFF (1) IRIG receiver internal wrap disabled

If the specified item is ARU_IRIG_INPUT_THRESHOLD (442), the
value parameter specifies the IRIG receiver threshold voltage in millivolts.

The item ARU_IRIG_ADJUST_THRESHOLD (443) invokes the IRIG
DAC auto-adjustment procedure. This procedure determines the low and
high threshold values at which the incoming IRIG signal is present. It then
determines the best threshold level for the IRIG DAC, and returns the
value to the application in place of a returned status (failures are indicated
through return value of ARS_FAILURE). This procedure may execute for
up to and in some cases in excess of one minute before finding the best-
case threshold value for the incoming IRIG signal. If a printed status of the
execution progress within this procedure is desired, assign the value
parameter to any non-zero value.

If the specified item is ARU_IRIG_QUICK_ADJUSTMENT (444), the
API performs a quick adjustment of the IRIG DAC for an external input

AR_SET_DEVICE_CONFIG Program Interface Library

208 CEI-x30 User's Manual

IRIG signal, using signal edge detection for verification of signal presence.
This execution of this adjustment should require less than one second.

If the specified item is ARU_IRIG_SET_BIAS (446), the API assigns an
offset to the board IRIG time value calculation for any time and time-tag
retrieval.

If the specified item is ARU_IRIG_OUTPUT_ENABLE (26), valid value
parameter selections to control the state of the R830RX IRIG Generator
Enable are:

AR_ON (7) IRIG output is enabled
AR_OFF (8) IRIG output is disabled

If the specified item is ARU_HW_ENHANCE_UPDATE (31), valid value
parameter selections to control the board’s PCI BAR2 Size allocation
residing in an on-board EEPROM are:

AR_ON (7) support for the CEI-x30 Enhanced Firmware
 Interface is enabled
AR_OFF (8) support for the CEI-x30 Enhanced Firmware
 Interface is disabled

Based on the value parameter selection, the board may be reprogrammed to
support the 512Kb CEI-x30 Enhanced Firmware Interface (exclusively
supported with CEI-x30 API Version 2.00 and later); or it may be
reprogrammed to support only the standard 4Kb CEI-x30 interface,
(exclusively supported with CEI-x30 API Versions 1.00 through 1.70).

Any modification to the current PCI BAR2 Size allocation requires a host
restart for those changes to take effect in the system.

If the specified item is ARU_HW_INTERRUPT_ENABLE (29), valid
value parameter selections to control the state of the PCI Interrupt Enable
state are:

AR_ON (7) PCI Interrupts are enabled
AR_OFF (8) PCI Interrupts are disabled

If the specified item is ARU_INSERT_INT_Q_ENTRY (37), the value
parameter is ignored and the value 255 is inserted as the next entry in the
device interrupt queue.

Note:

Program Interface Library AR_SET_573_CONFIG

CEI-x30 User's Manual 209

AR_SET_573_CONFIG
CEI_INT16 ar_set_573_config (CEI_INT16 board, CEI_INT16 item,
CEI_INT32 value)

This routine provides the method for manipulating the ARINC 573/717
channel configuration attributes.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

ARS_INVHARVAL the item argument value is not supported by
the device configuration or this API routine.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

CEI_INT16 item (input) Specifies the configuration attribute
to define:

ARU_RECV_MODE receiver internal wrap.
ARU_RX_MERGED_MODE receiver merge mode enable.
ARU_RX_BITRATE receive channel bit rate.
ARU_RX_FIFO_ENABLE receive channel FIFO enable.
ARU_TX_BITRATE transmit channel bit rate.
ARU_TX_FIFO_ENABLE transmit channel FIFO enable.
ARU_573_RX_AUTO_DETECT data frame auto-detect enable.
ARU_573_RX_BPRZ_SELECT receiver BPRZ/HBP selection.
ARU_573_TX_BPRZ_SELECT transmit BPRZ encoding enable.
ARU_573_TX_HBP_SELECT transmit HBP encoding enable.
ARU_573_TX_SLEW_RATE transmit slew rate select.
ARU_573_SYNC_WORD1 receiver auto-detect sync word 1.
ARU_573_SYNC_WORD2 receiver auto-detect sync word 2.
ARU_573_SYNC_WORD3 receiver auto-detect sync word 3.
ARU_573_SYNC_WORD4 receiver auto-detect sync word 4.

CEI_INT32 value (input) The state to assign to the specified
configuration item:

Syntax

Description

Return Value

Arguments

AR_SET_573_CONFIG Program Interface Library

210 CEI-x30 User's Manual

If the requested item is ARU_RECV_MODE (5), valid value parameter
selections are:

AR_WRAP_ON (0) = internal wrap enabled
AR_WRAP_OFF (1) = internal wrap disabled

If the requested item is ARU_RX_MERGED_MODE (18), valid value
parameter selections are:

AR_ON (7) receiver merged mode operation enabled
AR_OFF (8) receiver merged mode operation disabled

If the requested item is ARU_RX_FIFO_ENABLE (16) or
ARU_TX_FIFO_ENABLE (17), valid value parameter selections are:

AR_ON (7) FIFO operation enabled
AR_OFF (8) FIFO operation disabled

If the configuration item is ARU_RX_BITRATE (1) or
ARU_TX_BITRATE (2), valid item values are one of the following (0-7):

ARU_573_RATE_SIZE_384_32 384 bps, 32 word sub-
frame

ARU_573_RATE_SIZE_768_64 768 bps, 64 word sub-
frame

ARU_573_RATE_SIZE_1536_128 1536 bps, 128 word sub-frame

ARU_573_RATE_SIZE_3072_256 3072 bps, 256 word sub-frame

ARU_573_RATE_SIZE_6144_512 6144 bps, 512 word sub-frame

ARU_573_RATE_SIZE_12288_1024 12288 bps, 1024 word sub-frame

ARU_573_RATE_SIZE_24576_2048 24576 bps, 2048 word sub-frame

ARU_573_RATE_SIZE_49152_4096 49152 bps, 4096 word sub-frame

If the configuration item is ARU_573_RX_AUTO_DETECT (301), valid
item values are one of the following:

AR_ON (7) ARINC 573/717 frame auto-detection enabled
AR_OFF (8) ARINC 573/717 frame auto-detection disabled

If the configuration item is ARU_573_RX_BPRZ_SELECT (302), valid
item values are one of the following:

AR_OFF (7) ARINC 573/717 HBP reception enabled
AR_ON (8) ARINC 573/717 BPRZ reception enabled

If the configuration item is ARU_573_TX_BPRZ_SELECT (313), valid
item values are one of the following:

AR_OFF (7) ARINC 573/717 BPRZ transmission disabled
AR_ON (8) ARINC 573/717 BPRZ transmission enabled

Program Interface Library AR_SET_573_CONFIG

CEI-x30 User's Manual 211

If the configuration item is ARU_573_TX_HBP_SELECT (314), valid
item values are one of the following:

AR_OFF (7) ARINC 573/717 HBP transmission disabled
AR_ON (8) ARINC 573/717 HBP transmission enabled

If the configuration item is ARU_573_TX_SLEW_RATE (315), valid
item values are one of the following:

ARU_573_TX_SLEW_1PT5 (1) = fast (1.5µsec rise time)
ARU_573_TX_SLEW_10PT0 (0) = slow (10.0µsec rise time)

If the configuration item is ARU_573_SYNC_WORD1 (307),
ARU_573_SYNC_WORD2 (308), ARU_573_SYNC_WORD3 (309), or
ARU_573_SYNC_WORD4 (310), a valid item value is any 12-bit non-
zero value.

AR_SET_MULTITHREAD_PROTECT Program Interface Library

212 CEI-x30 User's Manual

AR_SET_MULTITHREAD_PROTECT
CEI_INT16 ar_set_multithread_protect (CEI_INT16 board, CEI_INT16
state)

This routine controls the use of mutex/semaphore protection around all
device channel-specific accesses performed within the API routines. This
type of thread protection should be enabled for any multi-threaded
application or reentrant API usage.

ARS_NORMAL routine was successful.

ARS_INVARG An invalid state value was provided.

ARS_INVBOARD An invalid board value was provided.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

CEI_INT16 state (input) Multi-thread protection setting, valid
values are defined as follows:

 AR_ON (7) enables mutex/semaphore protection.

 AR_OFF (8) disables mutex/ semaphore protection.

Syntax

Description

Return Value

Arguments

Program Interface Library AR_SET_ISR_FUNCTION

CEI-x30 User's Manual 213

AR_SET_ISR_FUNCTION
CEI_INT32 ar_set_isr_function (CEI_INT32 board, pCEI_VOID function)

This routine allows the host application to define a custom interrupt service
routine to be referenced by the operating system-specific hardware
interrupt initialization. It assigns the host-supplied function pointer to an
array of pointers indexed by the board parameter value. The function
referenced by this pointer is invoked from the internal routine
cei_utl_interrupt_handler() instead of executing the default API-supplied
"flush the h/w interrupt queue" processing.

The function declaration for the supplied interrupt service routine should
be defined as follows for the respective operating system:

Any Windows:

void _stdcall host_interrupt_handler (CEI_INT32 deviceIndex);

Any Linux distribution:

void host_interrupt_handler (CEI_INT32 deviceIndex);

Any VxWorks or Integrity distribution:

void host_interrupt_handler (CEI_INT32 deviceIndex ,
 pCEI_UINT32 data);

The data parameter should not be used by the ISR.

This interrupt service routine is executed as a separate process or
task from the actual host low-level h/w interrupt processing, with an
execution priority based on default process/task priority settings for
the respective host operating system.

ARS_NORMAL routine was successful.

ARS_INVARG An null function value was provided.

ARS_INVBOARD An invalid board value was provided.

CEI_INT16 board (input) Device index for storing the function
pointer. Valid range is 0-15.

pCEI_VOID function (input) Function pointer to the host specified
interrupt service routine.

Syntax
Description

Note:

Return Value

Arguments

AR_SET_ PRELOAD_CONFIG Program Interface Library

214 CEI-x30 User's Manual

AR_SET_ PRELOAD_CONFIG
CEI_INT16 ar_set_preload_config (CEI_INT16 board, CEI_INT16 item,
CEI_UINT32 value)

This routine is designed to provide protection when executing multi-
threaded or multi-ppocess applications with your CEI-x30 device. Call this
routine before calling AR_LOADSLV to update the value of a particular
pre-load API operational configuration setting. This routine should not be
called subsequent to any invocation of AR_LOADSLV.

If item is ARU_CONCURRENCY_MODE, the value parameter specifies
the API concurrency mode. One of three modes may be selected:
AR_CONC_NONE, AR_CONC_MULTITHRD, or
AR_CONC_MULTIPROC. Note that some modes are only supported on
certain operating systems.

The default concurrency mode, AR_CONC_NONE, provides no multi-
thread protection to the device and no multi-process API support. The user
application must ensure that only one thread is calling into the API at any
given time, and only a single process may interface with a particular board.

If AR_CONC_MULTITHRD concurrency mode is selected, thread
protection for each device access is provided internally within the API.
The user application may call into the API from multiple threads, but all
threads must belong to a single process. The main user application thread
should initialize the board with a call to AR_LOADSLV before other
threads attempt to call into the API. This mode is supported on all
operating systems supported by the CEI-x30 software distribution.

If AR_CONC_MULTIPROC concurrency mode is selected, thread
protection is provided internally within the API and multiple processes
may interface with a single board. If any process requests multi-process
mode, all other processes must also request multi-process mode. This
mode is only supported under Windows operating systems and Linux
Kernel 2.6 distributions specifically supporting System V features.

The use of hardware interrupts is prohibited when multi-process
operations are enabled under the Windows operating system.

In this mode, all processes must invoke AR_LOADSLV during
initialization of the process and AR_CLOSE upon termination. Failure to
follow this strict requirement could result in irrecoverable errors. Note that
board setup/initialization is only executed in AR_LOADSLV if no other
processes have the board open. If another process has the board open (that
is, if another process has opened the board using AR_LOADSLV but
hasn't yet closed the board using AR_CLOSE), AR_LOADSLV attaches to
the device without re-initializing the board or modifying board settings.

Syntax

Description

Note:

Program Interface Library AR_SET_ PRELOAD_CONFIG

CEI-x30 User's Manual 215

Similarly, AR_CLOSE only shuts down the board if no other processes
have the board open. If another process has the board open, AR_CLOSE
detaches from the board without shutting it down. Thus, board settings are
preserved across all process invocations of AR_LOADSLV and
AR_CLOSE. Multi-process mode is only required when accessing a single
board from multiple processes. If multiple boards are installed,
AR_CONC_NONE concurrency mode can be used as long as only one
process interfaces with each board.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An invalid board value was provided.

ARS_INVARG An invalid item or value parameter was
provided.

ARS_BOARD_MUTEX Creation of the Board Lock mechanism
failed.

ARS_NO_OS_SUPPORT The item selection not supported with the
host operating system.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

CEI_INT16 item (input) Attribute about which to set
information, currently limited to a single
option, ARU_CONCURRENCY_MODE.

CEI_UINT32 value (input) the value to set the specified item.

AR_CONC_NONE no multi-thread or multi-process support
(default).

AR_CONC_MULTITHRD multi-thread concurrency mode (see
Description section for details).

AR_CONC_MULTIPROC multi-process concurrency mode (see
Description section for details).

Return Value

Arguments

AR_SET_RAW_MODE Program Interface Library

216 CEI-x30 User's Manual

AR_SET_RAW_MODE
CEI_INT16 ar_set_raw_mode (CEI_INT16 board, CEI_INT16 direction,
CEI_INT16 channel, CEI_INT16 control)

This routine is designed to provide compatibility with the CEI-x20 ARINC
APIs. The routine AR_SET_DEVICE_CONFIG is the recommended
routine for manipulating the channel parity attribute.

Each transmit and receive channel can be configured to run in raw mode,
where parity assignment and detection is disabled. When raw mode is
selected, every 32-bit ARINC word is transmitted or received with the
parity bit (msb) unchanged. This differs from a standard ARINC 429 data
transfer in which the message parity is always calculated. Raw mode is
typically used for older ARINC specifications such as ARINC 575.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_INVHARVAL An invalid channel parameter was provided
or the specified channel doesn’t support
parity selection.

ARS_INVARG An invalid direction or control parameter
was provided.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

CEI_INT16 direction (input) The type of channel specified in the
channel argument (transmit or receive).
Valid values to select transmit channels are:

TRANSMIT_CHANNEL (0)
ARU_XMIT (34)

 Valid values to select receive channels are:

RECEIVE_CHANNEL (1)
ARU_RECV (35)

Syntax

Description

Return Value

Arguments

Program Interface Library AR_SET_RAW_MODE

CEI-x30 User's Manual 217

CEI_INT16 channel (input) Specifies which channel this routine
is to access. Valid range is 0 to one less than
the installed channel count for the respective
channel type.

CEI_INT16 control (input) Enables or disables raw mode.

AR_ON (7) enable "raw" mode, parity
is disabled
AR_OFF (8) disable "raw" mode, parity
assignment and/or checking is enabled

AR_SET_ STORAGE_MODE Program Interface Library

218 CEI-x30 User's Manual

AR_SET_ STORAGE_MODE
CEI_INT16 ar_set_storage_mode (CEI_INT16 board, CEI_INT16 mode)

This routine is designed to provide compatibility for data storage mode
selection with the CEI-x20 ARINC API. The routine
AR_SET_DEVICE_CONFIG is the recommended routine for manipulating
the receive channel data storage mode of operation.

CEI-x30 devices are capable of storing received data in either individual
FIFO buffers or in a single merged FIFO buffer on a channel-by-channel
basis. This routine allows you to perform a single invocation to select the
universal receive mode for all receive channels on the device, as either
BUFFERED or MERGED.

When a channel storage mode is buffered, each receiver is assigned an
independent circular FIFO buffer for data storage. When a channel storage
mode is merged, data received on than channel is stored in the merged
receive FIFO. Each receive data API routine handles the respective
channel active storage mode internally, acquiring data from the appropriate
buffer as necessary.

ARS_NORMAL Routine execution was successful.

ARS_INVARG An invalid mode value was provided.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

CEI_INT16 mode (input) The type of receive data storage
mode to assign. Valid values are:

ARU_BUFFERED (0) use individual FIFO buffers

ARU_MERGED (2) use the merged FIFO buffer

Syntax

Description

Return Value

Arguments

Program Interface Library AR_SET_TIME

CEI-x30 User's Manual 219

AR_SET_TIME
CEI_INT16 ar_set_time (CEI_INT16 board, pAR_TIMETAG_TYPE
timeTag)

This routine assigns a value to the specified CEI-x30 device internal timer
or IRIG time generator based on an application-supplied time format and
value.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_INVARG An invalid timeTag structure member,
timeTagFormat selection was provided.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed .

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

pAR_TIMETAG_TYPE timeTag

 (input) The 64-bit device timer or 32-bit
IRIG time generator value to assign to the
respective hardware. Valid options for the
timeTagFormat structure member are:

AR_TIMETAG_EXT_IRIG_64BIT (0)
AR_TIMETAG_INT_USEC_64BIT (1)

 To assign a 32-bit IRIG Day/Time
value, the timeTag structure member
should be defined as a 30-bit value of
the following bit format:

29-28 27-24 23-20 19-18 17-14 13-11 10-7 6-4 3-0

hundreds
of days

tens of
days

days tens of
hours

hours tens of
minutes

minutes tens of
seconds

seconds

Syntax

Description

Return Value

Arguments

AR_SET_TIME Program Interface Library

220 CEI-x30 User's Manual

 To assign a 64-bit internal timer value,
the timeTag structure member should be
defined as a 64-bit 1 microsecond
resolution time value.

 The timeTagRef structure member is not
used by this routine.

 See the section titled Time-tag Structure Definition for
more information on the AR_TIMETAG_TYPE data
structure.

Program Interface Library AR_SLEEP

CEI-x30 User's Manual 221

AR_SLEEP
CEI_VOID ar_sleep (CEI_UINT32 sleep_ms)

This routine suspends execution of the calling thread for the specified
number of milliseconds. Platform-dependent thread delay methods are
used to implement this operation, defined below for the supported
operating system. The accuracy of this operation is dependent upon the
accuracy of the underlying operating system call.

None

CEI_INT32 sleep_ms (input) Sleep duration, in milliseconds.

Syntax

Description

Return Value

Arguments

AR_SET_TIMERRATE Program Interface Library

222 CEI-x30 User's Manual

AR_SET_TIMERRATE
CEI_VOID ar_set_timerrate (CEI_INT16 board, CEI_INT16 rate)

This routine assigns the API internal timer reference resolution for
compatibility with applications based on the CEI-x20 product family
device timer and time-tag operation. When you invoke this routine, the
CEI-x30 API sets the current timer usage and time-tag reporting mode to
the “CEI-x20 compatibility mode”. In this mode, all scheduled message
rate and start offset values and receive message time-stamp values are
referenced in terms of the resolution value assigned in the “rate” parameter
instead of the standard one millisecond (for scheduled message rate/offset)
or one microsecond (for receive message time-stamps).

The actual CEI-x30 hardware device time-tag reference timer resolution is
not programmable; rather, it is a fixed one microsecond resolution.

The CEI-x30 message scheduler minimum rate resolution is fixed at a one
millisecond resolution. As a result, any timer rate assignment having a
resolution that is not divisible by, or is less than, one millisecond, coupled
with an attempt to define a message scheduler entry rate or start offset
value that is not divisible by one millisecond results in that value being
assigned to the nearest 1 millisecond value below the assigned value.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

CEI_INT16 rate (input) Resolution of the CEI-x30-emulated
timer operation, specified as a tick-timer
value having a resolution of 250
nanoseconds.

Syntax

Description

Arguments

Program Interface Library AR_STOP

CEI-x30 User's Manual 223

AR_STOP
CEI_INT16 ar_stop (CEI_INT16 board)

This routine assigns the global enable register Global Enable bit to be
disabled for the specified device. All active message processing is
terminated upon execution of this routine.

ARS_NORMAL Routine execution was successful.

ARS_INVBOARD An uninitialized board or invalid board
value was provided.

ARS_BOARD_MUTEX Access to the Board Lock timed-out/failed.

CEI_INT16 board (input) Device to access. Valid range is 0-
15.

Syntax

Description

Return Value

Arguments

AR_VERSION Program Interface Library

224 CEI-x30 User's Manual

AR_VERSION
CEI_VOID ar_version (pCEI_CHAR verstr)

This routine retrieves the current software version number of the device
API.

pCEI_CHAR verstr (output) String representation of the API
Version number consisting of up to 10
characters.

Syntax

Description

Arguments

Program Interface Library AR_WAIT

CEI-x30 User's Manual 225

AR_WAIT
CEI_VOID ar_wait (CEI_FLOAT nsecs)

This routine delays the calling application by the specified number of
seconds. The delay is based on the respective OS system time utility.

CEI_FLOAT nsecs (input) Number of seconds to delay.

Syntax

Description

Arguments

CEI-x30 User's Manual 226

CHAPTER 17

CEI-x30 Hardware Interface

Overview
This chapter describes the low level programming of the CEI-x30 product.

The information in this chapter is provided if you intend to author your
own software interface and device driver.

Control of a CEI-x30 device is performed by reading and writing the board
registers, mapped into the host memory space via the BAR0 and/or BAR2
memory regions. PCI devices use the BAR0 region for PCI target interface
configuration registers, and the BAR2 region for all other registers and
memory. Native PCI-Express devices do not have a PCI target interface
component and use the BAR0 region for all access to registers and
memory. To program the device, you must first know where these
memory regions are mapped in host memory space. In the following
sections, the PCI Configuration region and BAR2 (BAR0 for native PCI-
Express boards) device configuration registers and buffers are described.
All BAR2/BAR0 registers and buffers are 32 bits wide for both read and
write access.

Note:

CEI-x30 Hardware Interface PCI Configuration Space

CEI-x30 User's Manual 227

PCI Configuration Space
The following table describes the CEI-x30 PCI Configuration Space
definition.

Table 59. CEI-x30 PCI Configuration Space

31 23 15 7 Offset

Device ID
NNNNh (0830 for example)

Vendor ID
13C6h

00h

Status Command 04h
Base class
FFh

Sub-class
00h

Interface
00h

Revision ID
00h

08h

BIST
Reserved
00h

Header type
00h

Latency
Timer
Reserved
00h

Cache Line
Size
Reserved
00h

0Ch

Base Address Register 0 for memory-mapped PCI local
configuration registers (or RAR-PCIE FPGA access).

10h

Base Address Register 1 for I/O-mapped PCI local configuration
registers.

14h

Base Address Register 2 PCI local bus (FPGA access). 18h
Base Address Register 3 (reserved) 1Ch
Base Address Register 4 (reserved) 20h
Base Address Register 5 (reserved) 24h
Cardbus CIS Pointer (reserved) 00000000h 28h
Subsystem ID
NNNNh

Subsystem Vendor ID
13C6h

2Ch

Expansion ROM Base Address (reserved) 30h
Reserved 0x00000000h 34h
Reserved 0x00000000h 38h
MAX_LAT
00h

MIN_GNT
00h

Interrupt pin
00h

Interrupt line 3Ch

PCI Device Identifiers and Resources
The following table provides the PCI Device ID and Subsystem ID values
for the CEI-x30 products, along with the BAR memory size allocations for
the memory regions utilized with the enhanced firmware configuration:

PCI Configuration Space CEI-x30 Hardware Interface

228 CEI-x30 User's Manual

Product PCI Device
ID

BAR0
(bytes)

BAR1
(bytes)

BAR2
(bytes)

CEI-430 0430h 128 0 512K

CEI-430A 430Ah 128 0 512K

CEI-830 0830h 512 256 512K

R830RX 0831h 512 256 512K

RCEI-530 0530h 512 256 512K

RAR-CPCI 0630h 512 256 512K

RAR-EC 100Ah 128 0 512K

RAR-PCIE 100Bh 512K 0 0

AMC-A30 1009h 512 256 512K

CEI-x30 Hardware Interface Host Memory Map

CEI-x30 User's Manual 229

Host Memory Map
The following table summarizes the memory-mapped host interface for the
CEI-x30 device firmware, described in detail in the following sections.

Table 60. CEI-x30 Host Memory Map

Byte Address Read/Write Device Interface Register Description
0x00000 Read/Write Global Enable Register

0x00004 Write only DAC Control Register

0x00008 Read/Write Timer Register- least significant 32 bits

0x0000C Read/Write Timer Register - most significant 32 bits

0x00010 Write only Update IRIG Generator Time Register

0x00014 Read only IRIG Sample Time Register

0x00018 Read only IRIG Sample Timestamp Register (least significant 32 bits)

0x0001C Read only IRIG Sample Timestamp Register (most significant 32 bits)

0x00020 Write only SRAM Address Register

0x00024 Read/Write SRAM Data Register

0x00028 – 0x0037 Read only General Input Registers 1-4

0x00038 Read/Write Interrupt Queue Register

0x0003C – 0x0007F Unused

0x00080 Read only Board temperature (RAR-PCIE and CEI-430A only)

0x00084 Read only Voltage Monitor (+1.0V) (RAR-PCIE only)

0x00088 Read only Voltage Monitor (+2.5V) (RAR-PCIE only)

0x0008C – 0x003FF Unused

0x00400 – 0x007FF Read only Channel Statistics Table

0x00800 – 0x03FFF Unused

0x04000 – 0x07FFF Channel Register Set (64 byte sections defined as follows for
each of the 256 allocated channels)

0x00 Read only Channel Status Register

0x04 Read/Write Channel Configuration Register 1

0x08 Read/Write Channel Configuration Register 2

0x0C Read/Write Channel Configuration Register 3

0x10 Read or Write Channel Buffer Word 1 (Read for Receive, Write for Transmit)

0x14 Read or Write Channel Buffer Word 2

0x18 Read or Write Channel Buffer Word 3

0x1C Read or Write Channel Buffer Word 4

0x20 – 0x3F Spare

0x08000 – 0x09FFF Read Only Interrupt Queue (4 bytes/entry for each of 2048 entries)

0x0A000 – 0x20000 Unused

0x20000 – 0x27FFF Read/Write Message Scheduler Table

0x28000 – 0x3FFFF Unused

Device Interface Register Set (Common Memory) CEI-x30 Hardware Interface

230 CEI-x30 User's Manual

Byte Address Read/Write Device Interface Register Description
0x40000 – 0x7FFFF Read Only Snapshot Buffer (4096 bytes for each of channels 0 - 63)

Device Interface Register Set (Common Memory)

Global Enable Register
31 30–24 23 - 16 15 - 8 7 6 5 4 3 2 1 0

Device
Disable

Not
Used

F/W
Vers.

Board
Config

IRIG
Output
Enable

Snap-
shot

Mode

Clear
Int.

Interrupt
Enable

IRIG
Edge

Received

IRIG
Present

IRIG
Internal
Wrap

Global
Enable

The fields in the Global Enable register are described as follows:

Field Description Values

GLOBAL ENABLE This bit is used to enable and
disable transmit and receive
operation of the device. When
disabled, data transfer between the
transmit and receive FIFOs in
SRAM are cleared. Individual
channel data (de)serialization
processes is disabled. This bit also
enables and disables message
scheduler operation.

0 = disabled (reset condition)
1 = enabled

IRIG INTERNAL
WRAP

This bit is used to enable and
disable internal connection of the
on-board IRIG generator to the
IRIG receiver.

0 = wrap disabled
1 = wrap enabled

IRIG PRESENT
(read only)

This bit indicates whether or not
IRIG hardware is installed.

0 = IRIG not installed
1 = IRIG installed

IRIG EDGE
RECEIVED
(read only)

This bit indicates an IRIG signal
edge was detected on the IRIG
receiver input pins. This bit is
cleared when this register is read.
This bit is used to help determine
the appropriate IRIG receive
threshold level.

0 = IRIG edge not detected
1 = IRIG edge detected

CLEAR INTERRUPT
(write only)

This bit clears a pending interrupt
in the firmware interface

0 = undefined
1 = clear the pending interrupt

INTERRUPT
ENABLE

This bit enables generation of PCI
interrupts from the label filter table
trigger mechanism.

0 = PCI interrupt disabled
1 = PCI interrupt enabled

SNAPSHOT MODE This bit defines how received
messages are stored in the
snapshot buffer.

0 = storage using label + SDI
1 = storage using label only

IRIG OUTPUT
ENABLE
(R830RX only)

This bit enables IRIG Generator
signal output on P1 pins 33 and 66,
P14 pins 63 and 64, when jumper
shunt sets J4 and J5 are shorted

0 = IRIG Output disabled
1 = IRIG Output enabled

CEI-x30 Hardware Interface Device Interface Register Set (Common Memory)

CEI-x30 User's Manual 231

Field Description Values

BOARD
CONFIGURATION
(read only)

This bit field indicates the
programmed configuration of the
device.

 7 = CEI-830 11 = R830RX
 8 = CEI-430 12 = RAR-CPCI
 9 = AMC-A30 13 = RAR-EC
10 = CEI-530 14 = RAR-PCIE
15 = CEI-430A

FIRMWARE
VERSION
(read only)

This bit field indicates the version of
firmware programmed on the board 2 digit value, 4 bits/digit

DEVICE DISABLE
(read only)

This bit indicates the on-board
security feature has disabled the
board. This bit is not supported by
the CEI-830.

0 = device enabled
1 = device disabled

DAC Control Register
The DAC Control Register determines the IRIG Receiver voltage threshold
and the AMC-A30 Discrete Input voltage threshold. The optimal threshold
for a DC level IRIG signal is the midpoint between the upper and lower
voltage levels of the IRIG signal. An appropriate level for an AM encoded
IRIG signal is at the 80% point between the upper and lower voltage levels
of the IRIG signal. The 80% value is acceptable for a DC signal, and
should be used if the host does not know which encoding (DC or AM) is
used.

For the AMC-A30, the Discrete Input voltage threshold is set when bit 8 of
the DAC control register is set high, otherwise, the IRIG Receiver voltage
threshold will be selected. The default Discrete Input voltage threshold
level is 10.2 volts.

31 - 9 8 7 - 0

N/A AMC-A30
DAC Select

0 = IRIG
1 = Discrete

DAC Value
IRIG DAC value = (128 + ((256/3.3)*(4.99/22.1) * VIRIG_Threshold))

Where VIRIG_Threshold is the value in Volts for the IRIG receive
threshold relative to the input pins.

Discrete DAC value = 0.3V + (256/3.3) * VDiscrete_In_Threshold

Timer Registers
These two registers contain the current 64-bit 1µsec device timer value.
When reading these registers, the Time-Tag High Word is latched when
the Time-Tag Low Word is read. When writing these registers, the value
written to the Time-Tag Low Word is latched and stored and the entire 64-
bit timer is updated when the Time-Tag High Word is written. For this

Device Interface Register Set (Common Memory) CEI-x30 Hardware Interface

232 CEI-x30 User's Manual

reason, the Time-Tag Low Word must always be read or written before the
Time-Tag High Word or the combined contents will be invalid.

31 – 0

Time-Tag Low Word

The least significant 32-bits of the 64-bit timer, 1µsec resolution.

31 – 0

Time-Tag High Word

The most significant 32-bits of the 64-bit timer, resolution is approximately
71.58 minutes.

Update IRIG Generator Time Register
This register provides the means to assign the current IRIG time-of-year for
the IRIG generator circuit. The format follows the standard IRIG 30-bit
encoded time-of-year. The upper two bits of this register are unused. This
register is only valid if the Global Enable “IRIG Installed” bit is set.

29-28 27-24 23-20 19-18 17-14 13-11 10-7 6-4 3-0

hundreds
of days

tens of
days

days tens of
hours

hours tens of
minutes

minutes tens of
seconds

seconds

IRIG Sample Time Register
This register contains the last received IRIG bit-encoded time value. This
register is only valid if the Global Enable “IRIG Installed” bit is set.

29-28 27-24 23-20 19-18 17-14 13-11 10-7 6-4 3-0

hundreds
of days

tens of
days

days tens of
hours

hours tens of
minutes

minutes tens of
seconds

seconds

IRIG Sample Timestamp Registers
These two registers contain the device-referenced timer timestamp
recorded when the last IRIG time one-second sample was received. The
device will read the current 64-bit 1µsec device timer value when the first
bit of the IRIG time is detected and store it in these registers when the Last
IRIG Time register is updated. When reading these registers the Time-Tag
High Word is latched when the Time-Tag Low Word is read. For this
reason, the Time-Tag Low Word must always be read before the Time-Tag
High Word or the combined contents will be invalid.

CEI-x30 Hardware Interface Device Interface Register Set (Common Memory)

CEI-x30 User's Manual 233

31 – 0

Time-Tag Low Word

The least significant 32-bits of the 64-bit time-tag, resolution is 1µsec.

31 – 0

Time-Tag High Word

The most significant 32-bits of the 64-bit time-tag, resolution is
approximately 71.58 minutes.

SRAM Access Address Register
This register provides a means to access the CEI-x30 on-board SRAM
through the FPGA interface. The value assigned to this register is an offset
into the SRAM memory device, from 0 to 0x7FFFF, selecting the SRAM
address at which a read or write access will occur based on a subsequent
operation with the SRAM Access Data Register.

SRAM Access Data Register
This register defines the type of operation to perform on the SRAM
location specified in the SRAM Access Address Register. A read from this
register will result in a read and return the current 32-bit value in that
SRAM location, where a write to this register will result in a write of the
32-bit value to the respective SRAM location. Writes to this register
should be done carefully, since every SRAM location, including locations
used for label filtering tables, receive and transmit buffering, and other
internal functions, can be altered by this mechanism.

General Input Registers

General Input Register 1 - Discrete Inputs

For each Discrete Input on the device, a single bit is allocated in General
Input Register 1. The Discrete Input bit assignments start with the LSB, b0
as Discrete Input 1, b1 as Discrete Input 2, and increment by Discrete Input
Channel value through b31. Unpopulated inputs are always zero.

General Input Register 2 - Differential Inputs

For each Differential Input on the CEI-430, a single bit is allocated in
General Input Register 2. The Differential Input bit assignments are b0 for

Device Interface Register Set (Common Memory) CEI-x30 Hardware Interface

234 CEI-x30 User's Manual

Differential Input 1, b1 for Differential Input 2, b2 for Differential Input 3,
and b3 for Differential Input 4. Unpopulated inputs are always zero.

General Input Registers 2 and 3 are currently unused.

Interrupt Queue Register
The Interrupt Queue Register has different definitions based on the access
method used. When written, the Interrupt Queue Register is used to
generate a single host-defined entry in the Interrupt Queue, having a value
of 255. When read, the Interrupt Queue Register provides the current
Interrupt Queue Head Pointer, pointing to the most recent interrupt entry in
the queue and defined as follows:

31 – 1 10 - 0

Unused Current offset into the Interrupt Queue for the most
recent entry, with a valid range of 0 – 2047.

Channel Statistics Table
The Channel Statistics Table contains one entry for each of the 256
channels allocated on the device. Each entry contains a 32-bit counter
whose definition is based on whether the channel is a receive or transmit
channel. For a receive channel, the respective entry indicates the number
of messages received on that channel since the board was last initialized.
For a transmit channel, the respective entry indicates the number of
messages transmitted on that channel since the board was last initialized.

Channel Register Set
The Channel Register Set contains the status, configuration, and buffer
access registers for all 256 channels allocated on the device. Each channel
register sub-set is defined as shown below with the respective offset:

Channel Status Register 0x00
Channel Configuration Register 1 0x04
Channel Configuration Register 2 0x08
Channel Configuration Register 3 0x0C
Channel Buffer Word 1 0x10
Channel Buffer Word 2 0x14
Channel Buffer Word 3 0x18
Channel Buffer Word 4 0x1C

These components of the Channel Register Set are defined in the next
several paragraphs of this chapter.

CEI-x30 Hardware Interface Device Interface Register Set (Common Memory)

CEI-x30 User's Manual 235

Channel Status Register
The Channel Status Register has a common bit field definition across all
channels, but other than the Channel Type bit field, its use only applies to
those channels defined for protocol processing. The Channel Status
Register is defined as follows:

31 - 16 15 – 8 7 – 2 1 0

Buffer Fill Level Channel Type Unused Message Error Buffer Status

The fields in the Channel Status Register are described as follows:

Field Description Values
BUFFER
FILL
LEVEL
(read only)

For a receive channel, this field
indicates the number of unread
messages currently in the receive
buffer.
For a transmit channel, this field
indicates the number of
“untransmitted” messages residing in
the transmit buffer.

0 to 2047

CHANNEL
TYPE
(read only)

This field indicates the channel type
assigned to this Channel Register
Set.

 0 = unassigned channel
 1 = Merged Mode Receiver
 2 = ARINC 429 Receiver
 3 = ARINC 429 Transmitter
 4 = ARINC 717 Receiver
 5 = ARINC 717 Transmitter
 6 = ARINC 561 Receiver
 7 = ARINC 561 Transmitter
 8 = Avionics Discrete Input
 9 = Avionics Discrete Output
10 = Digital Input
11 = Digital Output
12 = Differential Input
13 = Differential Output
14 = Serial Receiver
15 = Serial Transmitter
16 to 255 = Undefined

MESSAGE
ERROR
(read/write)

This bit is set to “1” when an ARINC
429 message length error is
detected on the respective receive
channel. This bit is cleared when a
“1” is written to it by the host.

0 = no message error detected
1 = a message bit length error
was detected since this bit was
last cleared

Device Interface Register Set (Common Memory) CEI-x30 Hardware Interface

236 CEI-x30 User's Manual

Field Description Values
BUFFER
STATUS
(read only)

For a receive channel, the Buffer
Status bit indicates the availability of
unread messages. For a transmit
channel, the Buffer Status bit
indicates the fill-state of the buffer.

Receive Channel:
0 = no messages in the buffer
1 = an unread message is
available in the buffer
Transmit Channel:
0 = buffer is not full
1 = buffer is full

Channel Configuration Registers
The definition of the Channel Configuration Registers is dependent on the
associated channel type, and their use only applies to those channels
defined for protocol processing. The specific Channel Configuration
Register types are described in the following paragraphs, categorized by
channel type, as well as receive and transmit usage.

Channel Configuration Register 1 – ARINC 429 Receive
Channel Configuration Register 1 is defined for use as a Receive Channel
Configuration Register for the ARINC 429 protocol as follows:

31-28 27 - 16 15 14 13–3 2 1 0

N
ot

 U
se

d

Baud
Rate

Channel
Enable

Merge
Mode

Enable N
ot

 U
se

d

Internal
Wrap

Enable

Parity
Enable

N
ot

 U
se

d

The bit fields in the ARINC 429 Receive Channel Configuration Register
are described as follows:

Field Description Values
PARITY
ENABLE

This bit is used to enable and
disable parity checking on the
received ARINC 429 data.

0 = disabled (reset condition)
1 = enabled

INTERNAL
WRAP
ENABLE

This bit is used to enable and
disable the ability to wrap
transmitted data internal to the
device. Each receive channel is
internally connected to the
respective transmitter channel.

0 = disabled (reset condition)
1 = enabled

CEI-x30 Hardware Interface Device Interface Register Set (Common Memory)

CEI-x30 User's Manual 237

Field Description Values
MERGE
MODE
ENABLE

This bit controls the path for
storage of received data on the
respective channel. When
disabled, all received data is
stored in the individual receive
FIFO for the respective channel.
Then enabled, all received data is
stored in the merged receive
FIFO, accessed via channel 0.

0 = disabled (reset condition)
1 = enabled

CHANNEL
ENABLE

This bit controls the receiver’s
conversion of incoming ARINC
429 data for transfer to the
respective FIFO buffer. When
disabled, no data reception
operations are performed. When
enabled, data reception operations
are performed and data is
processed for storage in the
receiver’s FIFO buffer.

0 = disabled (reset condition)
1 = enabled

BAUD RATE This bit field controls the baud rate
for the ARINC 429 protocol. The
value of this field is used as a
divisor for the 16MHz clock
reference.

Baud Rate =
16,000,000 / (N+2)

Channel Configuration Register 1 – ARINC 573 Receive
Channel Configuration Register 1 is defined for use as a Receive Channel
Configuration Register for the ARINC 573/717 protocol as follows:

31-16 15 14 13 12 11 - 8 7–3 2 1-0

N
ot

 U
se

d

Channel
Enable

Not
Used

ARINC
717 Raw

Mode
Enable

ARINC
717

Encoding

ARINC
717

Rate &
Size N

ot
 U

se
d

Internal
Wrap

Enable N
ot

 U
se

d

The bit fields in the ARINC 573/717 Receive Channel Configuration
Register are described as follows:

Field Description Values
INTERNAL
WRAP
ENABLE

This bit is used to enable and
disable the ability to wrap
transmitted data internal to the
device. Each receive channel is
internally connected to the
respective transmitter channel.

0 = disabled (reset condition)
1 = enabled

Device Interface Register Set (Common Memory) CEI-x30 Hardware Interface

238 CEI-x30 User's Manual

Field Description Values
ARINC 717
RATE & SIZE

This bit field selects the ARINC
573/717 baud rate and respective
sub-frame size for use when Auto-
Sync reception is enabled.

Value Speed Sub-frame Size
 (bps) (words)
0x00 384 32
0x01 768 64
0x02 1536 128
0x03 3072 256
0x04 6144 512
0x05 12288 1024
0x06 24576 2048
0x07 49152 4096

ARINC 717
ENCODING

This bit selects the ARINC
573/717 encoding supported by
the receiver. When internal wrap
is enabled, the value of this bit has
no effect on data reception.

0 = Harvard Bi-Phase (HBP)
1 = Bi-Polar Return-to-Zero (BPRZ)

ARINC 717
RAW MODE
ENABLE

This bit disables the receiver
automatic frame detection logic on
the incoming ARINC 573/717
frame data and enables “Raw
Mode”. When disabled, the
receiver will automatically
synchronize to the incoming frame
using the sub-frame size selection
and the sync words programmed
in the configuration words 1
through 4 for the respective
channel. When Raw Mode is
enabled, frame data will be logged
to the receive buffer beginning with
the first bit encountered from the
ARINC 717 receiver.

0 = disabled (reset condition)
1 = Raw Mode enabled

MERGE
MODE
ENABLE

This bit controls the path for
storage of received data on the
respective channel. When
disabled, all received data is
stored in the individual receive
FIFO for the respective channel.
Then enabled, all received data is
stored in the merged receive
FIFO, accessed via channel 0.

0 = disabled (reset condition)
1 = enabled

CEI-x30 Hardware Interface Device Interface Register Set (Common Memory)

CEI-x30 User's Manual 239

Field Description Values
CHANNEL
ENABLE

This bit controls the receiver’s
conversion of incoming ARINC
429 data for transfer to the
respective FIFO buffer. When
disabled, no data reception
operations are performed. When
enabled, data reception operations
are performed and data is
processed for storage in the
receiver’s FIFO buffer.

0 = disabled (reset condition)
1 = enabled

BAUD RATE This bit field controls the baud rate
for the ARINC 429 protocol. The
value of this field is used as a
divisor for the 16MHz clock
reference.

Baud Rate =
16,000,000 / (N+2)

Channel Configuration Register 2 – ARINC 573 Receive
31 - 28 27 - 16 15 - 12 11 – 0

Not used Sync Word 2 Not used Sync Word 1

Channel Configuration Register 3 – ARINC 573 Receive
31 - 28 27 - 16 15 - 12 11 – 0

Not used Sync Word 4 Not used Sync Word 3

When the Channel Register Set is assigned to an ARINC 573/717 Receive
Channel, Channel Configuration Registers 2 and 3 specify the respective
ARINC 573/717 sub-frame sync words 1-4. These registers support
definition of the four 12-bit sub-frame sync words and are only used when
ARINC 717 Auto Sync is enabled. All four fields must be defined for the
Auto Sync feature to function.

Channel Configuration Register 1 – ARINC 429 Transmit
Channel Configuration Register 1 is defined for use as a Transmit Channel
Configuration Register for the ARINC 429 protocol as follows:

Device Interface Register Set (Common Memory) CEI-x30 Hardware Interface

240 CEI-x30 User's Manual

31-28 27 - 16 15 14 - 8 7 6 5 4 3 2 1 0

N
ot

 U
se

d

Ba
ud

 R
at

e

C
ha

nn
el

 E
na

bl
e

U
nu

se
d

Pa
ra

m
et

ric
 M

od
e

Tr
an

sm
it

D
is

ab
le

G
ap

 E
rro

r

Bi
t C

ou
nt

 H
ig

h

Bi
t C

ou
nt

 L
ow

Ev
en

 P
ar

ity

Pa
rit

y
En

ab
le

Sl
ew

 R
at

e

The bit fields in the ARINC 429 Transmit Channel Configuration Register
are described as follows:

Field Description Values
SLEW RATE This bit is used to select the slew

rate utilized with the ARINC 429
protocol.

0 = Slow Slew Rate (10 µsec)
1 = Fast Slew Rate (1.5 µsec)

PARITY
ENABLE

This bit is used to enable and
disable parity application to the
transmitted ARINC 429 message.

0 = disabled (reset condition)
1 = enabled

EVEN PARITY This bit is used to select between
even and odd parity when ARINC
429 message parity is under
device control. When enabled,
even parity is applied, when
disabled, odd parity is applied.

0 = odd parity (reset condition)
1 = even parity

BIT COUNT
LOW 1

This bit is used to enable a low bit
count error for ARINC 429
messages, resulting in the
transmission of 31 bits instead of
32.

0 = disabled (reset condition)
1 = enabled

BIT COUNT
HIGH 1

This bit is used to enable a high
bit count error for ARINC 429
messages, resulting in the
transmission of 33 bits instead of
32.

0 = disabled (reset condition)
1 = enabled

GAP ERROR 1 This bit is used to induce a
message gap error between
ARINC 429 message
transmissions, resulting in a two-
bit gap instead of the standard
four-bit gap.

0 = disabled (reset condition)
1 = enabled

1 This function is only supported by channels with a CHANNEL TYPE
indicating ARINC 429 Transmitter with PARAMETRIC MODE enabled.

CEI-x30 Hardware Interface Device Interface Register Set (Common Memory)

CEI-x30 User's Manual 241

Field Description Values
TRANSMIT
DISABLE

This bit is used to disable external
transmission to the respective
ARINC 429 transmitter. This
provides for the ability to transmit
internally to the respective
receiver with internal wrap
enabled, without exposing the
communications to a connected
device. For products that have
the ability to tri-state the transmit
output, setting this bit will cause
the output to be tri-stated. For all
other products, setting this bit will
cause the output to remain a
“null”.

0 = disabled (reset condition)
1 = enabled

PARAMETRIC
MODE

This bit is used to enable
parametric operation on the
respective transmit channel DAC.

0 = disabled (reset condition)
1 = enabled

CHANNEL
ENABLE

For ARINC 429 transmitters, this
bit controls the conversion of data
passed from the transmitter FIFO
for transmission on the bus.
When disabled, no data
transmission operations are
performed. When enabled, data
transmission operations are
performed using data provided
from the specified transmitter’s
FIFO buffer.

0 = disabled (reset condition)
1 = enabled

BAUD RATE This bit field controls the baud
rate for the ARINC 429 protocol.
The value of this field is used as a
divisor for the 16MHz clock
reference.

Baud Rate =
16,000,000 / (N+2)

Channel Configuration Register 1 – ARINC 573 Transmit
Channel Configuration Register 1 is defined for use as a Transmit Channel
Configuration Register for the ARINC 573/717 protocol as follows:

Device Interface Register Set (Common Memory) CEI-x30 Hardware Interface

242 CEI-x30 User's Manual

31-16 15 14 13 12 11 - 8 7 6 5-1 0

N
ot

 U
se

d

C
ha

nn
el

 E
na

bl
e

U
nu

se
d

AR
IN

C
 7

17
 H

BP

En
co

di
ng

AR
IN

C
 7

17
 B

PR
Z

En
co

di
ng

AR
IN

C
 7

17
 B

au
d

R
at

e

N
ot

 u
se

d

Tr
an

sm
it

D
is

ab
le

N
ot

 u
se

d

Sl
ew

 R
at

e

The bit fields in the ARINC 573/717 Transmit Channel Configuration
Register are described as follows:

Field Description Values
SLEW RATE This bit is used to select the slew

rate utilized with the ARINC 429
protocol.

0 = Slow Slew Rate (10 µsec)
1 = Fast Slew Rate (1.5 µsec)

TRANSMIT
DISABLE

This bit is used to disable external
transmission to the respective
ARINC 573 transmitter (either
HBP or BPRZ). This provides for
the ability to transmit internally to
the respective receiver with
internal wrap enabled, without
exposing the communications to
a connected device. For
products that have the ability to
tri-state the transmit output,
setting this bit will cause the
output to be tri-stated. For all
other products, setting this bit will
cause the output to remain a
“null”.

0 = disabled (reset condition)
1 = enabled

ARINC 717
BAUD RATE

This bit field selects the ARINC
573/717 baud rate.

0 = 384 bps
1 = 768 bps
2 = 1536 bps
3 = 3072 bps
4 = 6144 bps
5 = 12288 bps
6 = 24576 bps
7 = 49152 bps

ARINC 717
BPRZ
ENCODING

This bit enables the ARINC
573/717 Bi-Polar Return-to-Zero
(BPRZ) encoding transmitter.

0 = disabled (reset condition)
1 = enabled

ARINC 717
HBP
ENCODING

This bit enables the ARINC
573/717 Harvard Bi-Phase (HBP)
encoding transmitter.

0 = disabled (reset condition)
1 = enabled

CEI-x30 Hardware Interface Device Interface Register Set (Common Memory)

CEI-x30 User's Manual 243

Field Description Values
CHANNEL
ENABLE

For ARINC 573 transmitters, this
bit controls the conversion of data
passed from the transmitter FIFO
for transmission on the bus.
When disabled, no data
transmission operations are
performed. When enabled, data
transmission operations are
performed using data provided
from the specified transmitter’s
FIFO buffer.

0 = disabled (reset condition)
1 = enabled

Channel Configuration Register 1 – Discrete or Digital Output
The definition of the Discrete Output State is discussed in the section,
“Avionics Discrete I/O”.

31 – 1 0

Unused Discrete Output State

Channel Configuration Register 1 – Differential Output
The definition of the Differential Output State is discussed in the section,
“Differential Discrete I/O”.

31 – 2 1 0

Unused
Differential Output Enable

0 = tri-state
1 = enabled

Differential Output State

Channel Buffer Words
The definition of the Channel Buffer Words is dependent on the associated
channel type. Use of the different Channel Buffer Word sets is described
in the following paragraphs, categorized by receive, transmit, and I/O
usage.

General Buffer FIFO Operations

Protocol-based Receive and Transmit Channel Configuration Registers
control the processing related to the corresponding FIFO buffer for
message storage, accessed via Channel Buffer Words. FIFO operations are
completely independent of either of the Global Enable or Individual
Channel Enable states. Host access to FIFO buffers and FIFO head/tail

Device Interface Register Set (Common Memory) CEI-x30 Hardware Interface

244 CEI-x30 User's Manual

processing is enabled immediately following initialization of the board.
Regardless of the state of the “enable” bits, the host can read available data
from and write data to, any applicable FIFO buffer.

Channel Buffer Word 1 - Receive
31 – 0

Time-Tag Low Word

When the Channel Status Register indicates a receiver FIFO is not empty,
Channel Buffer Word 1 contains the least significant 32 bits of the 64-bit
time-tag. The resolution of this time-tag low word is 1µsec.

Channel Buffer Word 2 - Receive
31 – 0

Time-Tag High Word

When the Channel Status Register indicates the FIFO is not empty,
Channel Buffer Word 2 contains the most significant 32 bits of the 64-bit
time-tag. The resolution of this time-tag high word is approximately 71.58
minutes.

Channel Buffer Word 3 – Receive
31 – 8 7 – 0

Not used (all zeros) Channel

When the Channel Status Register indicates the FIFO is not empty,
Channel Buffer Word 3 contains the channel on which this data was
received. This information is useful when the Merged Mode channel is
enabled and utilized for the respective receive channel.

Channel Buffer Word 4 – Receive
31 – 0

Data

When the Channel Status Register indicates the FIFO is not empty,
Channel Buffer Word 4 contains the data that was received.

CEI-x30 Hardware Interface Device Interface Register Set (Common Memory)

CEI-x30 User's Manual 245

When the host reads the most significant byte of the long word 3, the
receiver FIFO for the selected channel is incremented to the next entry.
This could result in a FIFO Not Empty reset in the respective Receive
Status register if the FIFO becomes empty. This implies that Receive
Buffer Word 3 must be the last register accessed when reading a FIFO
buffer entry. This also implies that it is NOT necessary to read all four
Receive Buffer Word registers from the FIFO if the data is not needed.

The format for the data retrieved from Receive Buffer Word 4 is dependent
on the protocol assigned to the respective channel. The protocol data
format is described as follows:

ARINC 429/575 Data Format

31 30 – 10 9 - 8 7 - 0

Parity Indication or
ARINC Data MSB ARINC Data SDI bits or ARINC

Data bits 0-1
ARINC Label
(MSB – LSB)

If the Parity Enable bit is set to one in the respective Receive Configuration
register, the Parity Indication is set by the device to indicate the parity of
the message. A Parity Indication bit value of zero indicates this message
was received with odd parity, where a Parity Indication value of one
indicates the message was received with even parity. If the Receive
Configuration register Parity Enable bit is set to zero, this bit is not
manipulated by the device; instead, it reflects the value of bit 31 as
transmitted from the ARINC 429 source.

ARINC 573/717 Data Format

31 – 16 15 14 13 - 12 11 – 0

Unused Sync Indication Unused Sub-frame Identification Data Word

When the Sync Indication bit is set to one, it is an indication this word was
detected as a sync word. A Sync Indication bit value of zero indicates the
message was treated as a data word. The Sub-frame Identification bit field
identifies the sub-frame assignment for this word; where a value of one
indicates sub-frame 1, two indicates sub-frame 2, three indicates sub-frame
3, and zero indicates sub-frame 4.

Channel Buffer Word 1, 2, and 3 - Transmit
Channel Buffer Words 1, 2, and 3 are not currently used for transmit
operations.

Note:

Device Interface Register Set (Common Memory) CEI-x30 Hardware Interface

246 CEI-x30 User's Manual

Channel Buffer Word 4 - Transmit
31 – 0

Data

When the Channel Status Register indicates the FIFO is not full, Channel
Buffer Word 4 can be defined for transmission on the respective channel.

When the host writes the most significant byte of the long word 3, the
transmitter FIFO for the selected channel is incremented to the next
entry. This could result in a FIFO Not Full reset in the respective
Transmit Status register if the FIFO becomes full. This implies that
Transmit Buffer Word 3 must be the last register accessed when writing
a transmit FIFO buffer entry. This also implies that it is NOT necessary
to write all four Transmit Buffer Word registers.

The format for the data written to Channel Buffer Word 4 is dependent on
the protocol assigned to the respective channel. The protocol data format
is described as follows:

ARINC 429/575 Data Format

31 30 – 10 9 – 8 7 - 0

Parity Bit or
ARINC Data MSB ARINC Data

SDI bits or
ARINC Data bits

0-1

ARINC Label
(MSB – LSB)

If the Parity Enable bit is set to one in the respective Transmit
Configuration register, bit 31 of the 32-bit data word will be overwritten by
the device. The value assigned to bit 31 is based on the parity type and bit
content of the remaining 31 bits. If the Parity Enable bit is set to zero or
the ARINC 561 protocol is in use, bit 31 remains unchanged from the
value provided.

ARINC 573/717 Data Format

31 – 12 11 – 0

Unused Data Word

ARINC 573/717 data is assigned to the lower 12 bits of the 32-bit word.

Interrupt Queue
The CEI-x30 Interrupt Queue contains 2048 32-bit entries, each indicating
the source of an interrupt trigger. The most recent Interrupt Queue entry
updated by the CEI-x30 device is indicated via the Interrupt Queue Head
Pointer, accessed by reading the Interrupt Queue Register.

Note:

CEI-x30 Hardware Interface Device Interface Register Set (Common Memory)

CEI-x30 User's Manual 247

Valid Interrupt Queue entries are defined as follows:

31 – 8 7 - 0

Unused

Interrupt Queue Entry Definition:
Values in the ranges 0–63 and 128–254 are unused
64–127 = Interrupt Source/Receive Channel Number 0 to 63, (offset by 64)
255 = Host generated interrupt via write access to the Interrupt Queue
Register.

Message Scheduler Table
The CEI-x30 Message Scheduler feature is programmed via the Message
Scheduler Table, a table of 1024 entries each consisting of eight 32-bit
elements. As a part of the initialization of the device, the message
scheduler table should be initialized to a known state. This is required
before the message scheduler is enabled; otherwise, inadvertent message
transmission may result. The GLOBAL ENABLE bit of the Global Enable
Register turns message scheduling on and off; however, it has no affect on
the contents of the message schedule table.

The Message Scheduler will query each table entry on a one millisecond
basis, checking for all messages required for transmission at that particular
millisecond value. The entire table is processed each millisecond, with the
lowest table entry being processed first and highest table entry last. The
scheduler can only be enabled or disabled at the beginning of a one
millisecond epoch (this means that if the scheduler is disabled in the
middle of creating scheduled traffic, all of the ARINC words for that
millisecond will get loaded into the various transmit buffers before the
scheduler goes idle).

The elements of each Message Table entry are defined as follows:

Element Element Description Host Access
Limitations

0

MESSAGE
RATE

This element defines the periodic message
transmission rate in milliseconds, with the
following valid values:
0: entry is disabled/unused
1: transmission every 1 millisecond
0xFFFFFFFF: transmission every 232
milliseconds

None

1

CHANNEL This element must contain a valid ARINC 429
transmit channel number.

Writable only
when entry is
disabled.

Device Interface Register Set (Common Memory) CEI-x30 Hardware Interface

248 CEI-x30 User's Manual

Element Element Description Host Access
Limitations

2 NUMBER OF
MESSAGES
TO
TRANSMIT

This element defines the number of times to
transmit this periodic message, with the following
valid values:
0x00000000: message disabled, still processed
0x00000001: transmit one word
 |
0xFFFFFFFE: transmit (2^32)-1 words
0xFFFFFFFF: unlimited continuous transmission

Writable only
when entry is
disabled.

3 OFFSET This element is utilized in two ways. When
started, the Message Scheduler assigns this
element to the sum of the previous value in this
element and the contents of this element to the
MESSAGE RATE value. It then decrements the
value in this element every millisecond, using it
as a counter to track the periodic transmission
schedule of this message. Every time this offset
value reaches zero, a transmit word is placed in
the respective buffer and this value is reset to the
MESSAGE RATE value minus one.
For the application this element can be used as
an initial offset, providing a mechanism to
incorporate a delayed transmission of one or
more words. This is useful for avoiding message
rate skew.

Writable only
when entry is
disabled.

4, 5, 6 Not Used
7 DATA This element defines the periodic message

content to be transmitted. None

Snapshot Buffer
The Snapshot Buffer feature provides the ability to store the latest ARINC
429 message data received on a channel for subsequent recall by the host
application. It is implemented as a table of 256 entries/channel, (one entry
for each valid ARINC 429 label value), allocated for each of the first sixty-
four channels on the board. Each channel/label combination is allotted
four 32-bit locations, for a total of 4K words/channel.

Application definition of the Snapshot Storage Mode should be based on
the desired use of the Snapshot Buffer feature. Received ARINC 429
messages can be stored in each Snapshot Buffer entry based on the
message label value or in one of four separate locations within the entry
based on the combined values of the message label and SDI fields. The
Snapshot Storage Mode is defined via the SNAPSHOT MODE bit in the
Global Enable Register.

CEI-x30 Hardware Interface SRAM Memory Organization

CEI-x30 User's Manual 249

A SNAPSHOT MODE bit value of 0 configures snapshot storage based on
the message label field value only, while a value of 1 configures snapshot
storage based on the combined value of the message label and SDI fields.

Entries in the Snapshot Buffer are accessed using a combination of channel
value, ARINC 429 label value, and SDI field value. Combinations of these
field values range from channel 0 to 63, octal label value 000 to 377, and
SDI field value from 0 to 3. These latter two fields are identified in the
ARINC 429 word, with all three used in combination to calculate an offset
from the Snapshot Buffer base address as follows:

31 - 16 15 – 10 9 – 2 1 – 0

0
Channel
Number
(0 - 63)

ARINC 429 Label
Bits 7:0 of the
ARINC Word

Snapshot Mode = 0:
Use SDI Field Value as the offset
to message data within this entry
Snapshot Mode = 1:
Location 1 = 64-bit time-tag lsw
Location 2 = 64-bit time-tag msw
Location 3 = reserved
Location 4 = message data

SRAM Memory Organization
The CEI-x30 device uses several features mapped to the on-board SRAM
device, some of which are accessible through the use of the SRAM
Address and Data Registers. The memory map and descriptions for the
portions of this external memory are defined in the following three
paragraphs.

Lword Offset Read/Write Device Interface Register Description
0x00000 – 0x0FFFF Read/Write Label Filter Table

0x10000 – 0x1FFFF Read/Write Snapshot Buffer, (also mapped to Common Memory)

0x20000 – 0x7FFFF No access Individual Channel Buffers, allocated as follows:

0x20000 – x2FFFF No access Transmit Channel Buffers

0x30000 – x3FFFF No access Merged Receive Buffer

0x40000 – x7FFFF No access Receive Channel Buffers

Label Filter Table
The Label Filter Table provides a method to program buffer filtering and
hardware interrupt generation based on a field-match trigger using a
combination of the ARINC 429 message label, SDI, and ESSM field
values. This table contains an entry for each combination of ARINC 429
label, SDI, and ESSM values, programmed as eight 4-bit ESSM fields (0 to
7) in individual 32-bit locations accessed via combined label (octal 000 to

ARINC 429 Receive Threshold CEI-x30 Hardware Interface

250 CEI-x30 User's Manual

377) and SDI (0 to 3) values. The content of each Label Filter Table entry
is defined as follows:

3 2 1 0

Unused
Interrupt Enable

0: disabled
1: enabled

Snapshot Filter Enable
0 : unfiltered
1 : filtered

FIFO Filter Enable
0 : unfiltered
1 : filtered

When the Snapshot or FIFO Filter enable bit is zero for a specified
label/SDI/ESSM combination, any message received containing that
combined field value is recorded in the respective buffer. When the
respective filter enable bit is set to one for a specified label/SDI/ESSM
combination, any message received containing that combined fields value
is not recorded in the respective buffer. The FIFO Filter Enable bit
enables/disables filtering to either the regular or merged receive buffer,
depending on how this channel is programmed.

When the respective Interrupt Enable bit is set to one for a specified
label/SDI/ESSM combination, any message received containing that
combined field value will trigger an entry in the Interrupt Queue. If the
INTERRUPT ENABLE bit is set to Enabled in the Global Enable Register,
a PCI interrupt is also generated.

Snapshot Buffer
The Snapshot Buffer is mapped to the Device Interface Register Set,
located in common memory, described in a previous section of this
document.

Individual Channel Buffers
The Individual Channel Buffers provide storage for all transmit and receive
FIFO buffers. All host interaction surrounding the use of the FIFO buffers
is described in the respective Channel Buffer Word paragraphs, with the
underlying memory inaccessible to the host interface.

ARINC 429 Receive Threshold

The ARINC 429 Receive Threshold is configured at the factory to
be nominally +/- 3.0 volts, and is not user selectable.

CEI-x30 Hardware Interface Avionics Discrete I/O

CEI-x30 User's Manual 251

Avionics Discrete I/O
The CEI-430 provides up to sixteen bi-directional individually
configurable Avionics Discrete channels, while the CEI-830 optionally
provides up to four Avionics Discrete channels. Avionics Discrete I/O is
used for general avionics-level I/O interfacing. The discrete outputs are
low side n-channel FET switches capable of sinking 500mA, while the
inputs are single ended, protected (50V max), with a logic threshold of
approximately 2.7 V. The basic circuit for a discrete I/O channel is shown
below:

The discrete output channels have the following truth-table functionality:

Discrete Out Discrete I/O pin
1 FET ON [conduct to Ground]
0 FET OFF [tri-state]

When disconnected from any external signal, Discrete In reflects the value
of Discrete Out. When the FET is on, reading Discrete In should return a
“0”. When the FET is off, reading Discrete In generally returns a “1”
(because of the weak 22 KΩ pullup resistor) but the load attached to the
discrete I/O pin must also be taken into consideration.

The discrete input channels have the following truth-table functionality:

Discrete I/O pin Discrete In
> 2.7 VDC 1
< 2.7 VDC 0

Differential Discrete I/O
The CEI-430 provides up to four individually configurable RS-485-level
differential input/output channels. RS-485 differential channels are

+2.7 V

+

-

Discrete I/O

+3.3 V

22 KΩ

22 KΩ

Discrete Out Discrete In

Hardware Channel Assignments CEI-x30 Hardware Interface

252 CEI-x30 User's Manual

suitable for discrete signaling requiring long cable runs or when requiring
true differential signaling.

The Differential I/O channel receive data always reflects the state of the
channel’s I/O pair. The receive truth table is listed below.

Differential I/O Differential Input Data
DIFF+ ≥ DIFF- by 300mV 1
DIFF+ ≤ DIFF- by 300mV 0
DIFF+ and DIFF- shorted 1
DIFF+ and DIFF- floating 1

The Differential Discrete transmitter section requires the Differential
Transmit Enable bit to be set in order for the transmitter to function.

Differential Enable Differential
Transmit Differential I/O

0 X Hi-Z
1 1 DIFF+ > DIFF-
1 0 DIFF+ < DIFF-

Hardware Channel Assignments
While the hardware channel assignments may change with firmware
revisions, the API handles the actual channel indexing internally. When
using the AR_Get_Data and AR_Get_Data_XT API routines to access
board-level receive channel buffers, the following channel index values
apply:

Channel Index Value Channel Assignment
0 through 31 ARINC 429 Receive Channels

32 ARINC 717 Receive Channel
63 Merged Mode Receive Buffer

64 through 95 ARINC 429 Transmit Channels
96 ARINC 717 Transmit Channel

128 through 191 Discrete Input Channels
192 through 207 Discrete Output Channels

	Contents
	Figures
	Tables
	CEI-830
	Overview
	CEI-830 Specifications
	PMC/PCI Interface
	Transmit Channels
	Receiver Channels
	Avionics Discrete Input and Output
	IRIG Input and Output
	Typical Power Consumption
	Operating Temperature
	Weight

	PCI Memory Map
	I/0 Connections
	Input /Output Connectors
	Input/Output Connector Pin-out
	IRIG-B Signal Connections

	R830RX
	Overview
	R830RX Specifications
	PMC/PCI Interface
	Receiver Channels
	IRIG Input and Output
	Typical Power Consumption
	Operating Temperature
	Weight

	PCI Memory Map
	I/0 Connections
	Mating Connectors
	Input /Output Connector Pin-out

	Jumper Connections
	IRIG-B Signal Connections
	IRIG-B Generator Signal Connections
	IRIG-B Receiver Signal Connections

	CEI-530
	Overview
	CEI-530 Specifications
	PCI Interface
	Transmit Channels
	Receiver Channels
	Avionics Discrete Input and Output
	IRIG Input and Output
	Typical Power Consumption
	Operating Temperature
	Weight

	PCI Memory Map
	I/0 Connections
	CEI-530 Outline Drawing
	Mating Connectors
	ARINC Input /Output Connector Pin-out
	Discrete and IRIG Input/Output Connector Pin-out
	IRIG-B Signal Connections

	RAR-PCIE
	Overview
	RAR-PCIE Specifications
	PCI Express Interface
	Transmit Channels
	Receiver Channels
	Avionics Discrete Input and Output
	IRIG Input and Output
	Typical Power Consumption
	Operating Temperature
	Weight

	PCI Memory Map
	I/0 Connections
	RAR-PCIE Outline Drawing
	Mating Connectors
	ARINC Input/Output Connector Pin-out
	Discrete and IRIG Input/Output Connector Pin-out
	IRIG-B Signal Connections

	CEI-430
	Overview
	CEI-430 Specifications
	PCI Interface
	Transmit Channels
	Receiver Channels
	Avionics Discrete Input and Output
	Differential Discrete Input and Output
	IRIG Input and Output
	Typical Power Consumption
	Operating Temperature
	Weight

	PCI Memory Map
	I/0 Connections
	CEI-430 Outline Drawing
	Input/Output Connectors
	Input/Output Connector Pin-out
	IRIG-B Signal Connections

	CEI-430A
	Overview
	CEI-430A Specifications
	PCI Interface
	Transmit Channels
	Receiver Channels
	Avionics Discrete Input and Output
	IRIG Input and Output
	Typical Power Consumption
	Operating Temperature
	Weight

	PCI Memory Map
	I/0 Connections
	CEI-430A Outline Drawing
	Input / Output Connectors
	Input / Output Connector Pin-out
	IRIG-B Signal Connections

	AMC-A30
	Overview
	AMC-A30 Specifications
	AMC/PCIe Interface
	Transmit Channels
	Receiver Channels
	Avionics Discrete Input and Output
	IRIG Input and Output
	Typical Power Consumption
	Operating Temperature
	Weight

	PCI Memory Map
	I/O Connections
	Input/Output Connectors
	Input/Output Connector Pin-out
	IRIG-B Signal Connections

	RAR-EC
	Overview
	RAR-EC Specifications
	ExpressCard Interface
	Transmit Channels
	Receiver Channels
	Avionics Discrete Input and Output
	IRIG Input and Output
	Typical Power Consumption
	Operating Temperature
	Weight

	PCI Memory Map
	I/0 Connections
	Mating Connectors
	ARINC Input/Output Connector Pin-out
	Transition Cable Pin-out
	IRIG-B Signal Connections

	RAR-CPCI
	Overview
	RAR-CPCI Specifications
	PCI Interface
	Transmit Channels
	Receiver Channels
	Avionics Discrete Input and Output
	IRIG Input and Output
	Typical Power Consumption
	Operating Temperature
	Weight

	PCI Memory Map
	I/0 Connections
	RAR-CPCI Outline Drawing
	Mating Connectors
	ARINC Input/Output Connector Pin-out
	IRIG-B Signal Connections

	Windows Installation
	Software Installation for Windows
	Hardware Installation
	Hardware Installation with Windows 7/Vista/XP/2000/9x
	Hardware Installation with Windows NT 4.0
	Installation Verification

	VxWorks Installation
	Overview
	Building a VxWorks Image
	BIOS Initialization

	Using the Sample Program
	Building the API and Sample Program with Tornado
	Target-specific Compiler Directives

	Linux Installation
	Overview
	Software Installation
	Building Applications
	Automatic Installation (Builds LSP and API)
	Manual Installation

	Linux Driver Operation
	Troubleshooting
	Useful Linux system utilities
	Compilation Errors
	Run-time Errors

	Integrity® Support
	Introduction
	Integrity Installation
	Integrity PCI Driver Installation
	Building Integrity Applications
	Building the CEI-x30 API with Multi

	CEI-x30 Features
	Overview
	Enhanced CEI-x30 Interface
	ARINC 429 Protocol Support
	ARINC 429 Transmit Tri-state Support

	ARINC 573/717 Protocol Support
	CEI-x30 Timers
	Receive Message Time-tagging and Timer Usage
	IRIG 64-Bit Time Reference
	Internal 64-Bit One Microsecond Time Reference
	Internal 32-Bit Twenty Microsecond Time Reference
	Internal 32-Bit One Millisecond Time Reference
	CEI-x20 Compatible Time Reference

	Receive Message Buffering Methods
	Individual Circular Buffer Storage
	Merged Circular Buffer Storage
	Snapshot Buffer Storage

	Interrupts and Triggers
	ARINC 429 Receive Label Filtering and Interrupt Event
	ARINC 429 Periodic Message Scheduling
	Message Rate Skew

	BusTools/ARINC™ Data Bus Analyzer
	General Information
	BusTools/ARINC Demo Software

	Program Interface Library
	Overview
	API Source Files
	CDEV_API.C
	CDEV_API.H
	CDEV_GLB.H
	AR_ERROR.H
	CDEV_HW.H
	CEI_TYPES.H
	CDEV_WIN.C
	CDEV_VXW.C
	CDEV_LNX.C
	CDEV_INT.C
	CDEV_LRT.C
	CDEV_FW.H - Firmware Load Files

	Windows Libraries
	Time-tag Structure Definition
	Setting the Device Time

	Return Status Values
	Programming with the CEI-x30 API Interface
	Example Routines – Summary
	Tst_cnfg.c
	Multiprocess_test.c

	Visual Basic
	Working with Unsigned Integers in Visual Basic
	Example
	Solutions

	API Routines - Summary
	Initialization and Control Routines
	Device Control Routines
	Termination Routines
	Receive/Transmit Channel-level Configuration Routines
	Device-level Configuration Routines
	Receive Data Processing Routines
	Transmit Data Processing Routines
	Timer-related Routines
	Information and Status Routines
	Utility Routines

	AR_BOARD_TEST
	AR_BYPASS_WRAP_TEST
	AR_CLR_RX_COUNT
	AR_CLOSE
	AR_CONVERT_TIME_TO_STRING
	AR_DEFINE_MSG
	AR_DEFINE_MSG_BLOCK
	AR_ENH_LABEL_FILTER
	Label Filtering
	Interrupt Generation

	AR_EXECUTE_BIT
	AR_GET_573_FRAME
	AR_GET_429_MESSAGE
	AR_GET_BASE_ADDR
	AR_GETBLOCK
	AR_GETBLOCK_T
	AR_GET_BOARDNAME
	AR_GET_BOARDTYPE
	AR_GET_CONFIG
	AR_GET_DATA
	AR_GET_DATA_XT
	AR_GET_DEVICE_CONFIG
	AR_GET_573_CONFIG
	AR_GET_ERROR
	AR_GETFILTER
	AR_GET_LABEL_FILTER
	AR_GET_LATEST
	AR_GET_LATEST_T
	AR_GETNEXT
	AR_GETNEXTT
	AR_GETNEXT_XT
	AR_GET_RX_COUNT
	AR_GET_SNAP_DATA
	AR_GET_STATUS
	AR_GET_STORAGE_MODE
	AR_GET_TIME
	AR_GET_TIMERCNTL
	AR_GETWORD
	AR_GETWORDT
	AR_GETWORD_XT
	AR_GO
	AR_HW_INTERRUPT_BUFFER_READ
	AR_INTERRUPT_QUEUE_READ
	AR_INITIALIZE_API
	AR_INITIALIZE_DEVICE
	AR_HW_INTERRUPT_BUFFER_READ
	AR_INTERRUPT_QUEUE_READ
	AR_LABEL_FILTER
	AR_LOADSLV
	AR_MODIFY_MSG
	AR_MODIFY_MSG_BLOCK
	AR_NUM_RCHANS
	AR_NUM_XCHANS
	AR_PUT_429_MESSAGE
	AR_PUT_573_FRAME
	AR_PUTBLOCK
	AR_PUTBLOCK_MULTI_CHAN
	AR_PUTFILTER
	AR_PUTWORD
	AR_QUERY_DEVICE
	AR_RESET
	AR_RESET_TIMERCNT
	AR_SET_CONFIG
	AR_SET_DEVICE_CONFIG
	AR_SET_573_CONFIG
	AR_SET_MULTITHREAD_PROTECT
	AR_SET_ISR_FUNCTION
	AR_SET_ PRELOAD_CONFIG
	AR_SET_RAW_MODE
	AR_SET_ STORAGE_MODE
	AR_SET_TIME
	AR_SLEEP
	AR_SET_TIMERRATE
	AR_STOP
	AR_VERSION
	AR_WAIT

	CEI-x30 Hardware Interface
	Overview
	PCI Configuration Space
	PCI Device Identifiers and Resources

	Host Memory Map
	Device Interface Register Set (Common Memory)
	Global Enable Register
	DAC Control Register
	Timer Registers
	Update IRIG Generator Time Register
	IRIG Sample Time Register
	IRIG Sample Timestamp Registers
	SRAM Access Address Register
	SRAM Access Data Register
	General Input Registers
	General Input Register 1 - Discrete Inputs
	General Input Register 2 - Differential Inputs

	Interrupt Queue Register
	Channel Statistics Table
	Channel Register Set
	Channel Status Register
	Channel Configuration Registers
	Channel Configuration Register 1 – ARINC 429 Receive
	Channel Configuration Register 1 – ARINC 573 Receive
	Channel Configuration Register 2 – ARINC 573 Receive
	Channel Configuration Register 3 – ARINC 573 Receive
	Channel Configuration Register 1 – ARINC 429 Transmit
	Channel Configuration Register 1 – ARINC 573 Transmit
	Channel Configuration Register 1 – Discrete or Digital Output
	Channel Configuration Register 1 – Differential Output
	Channel Buffer Words
	General Buffer FIFO Operations

	Channel Buffer Word 1 - Receive
	Channel Buffer Word 2 - Receive
	Channel Buffer Word 3 – Receive
	Channel Buffer Word 4 – Receive
	ARINC 429/575 Data Format
	ARINC 573/717 Data Format

	Channel Buffer Word 1, 2, and 3 - Transmit
	Channel Buffer Word 4 - Transmit
	ARINC 429/575 Data Format
	ARINC 573/717 Data Format

	Interrupt Queue
	Message Scheduler Table
	Snapshot Buffer

	SRAM Memory Organization
	Label Filter Table
	Snapshot Buffer
	Individual Channel Buffers

	ARINC 429 Receive Threshold
	Avionics Discrete I/O
	Differential Discrete I/O
	Hardware Channel Assignments

